|本期目录/Table of Contents|

[1]董媛媛,范立民,裘丽萍,等.光合细菌强化生物絮团替代饵料对罗非鱼生长、水体环境及水体微生物多样性的影响[J].江苏农业科学,2020,48(03):167-174.
 Dong Yuanyuan,et al.Effects of photosynthetic bacteria-enhanced biological floc replacement diets on tilapia growth, water environment, and water microbial diversity[J].Jiangsu Agricultural Sciences,2020,48(03):167-174.
点击复制

光合细菌强化生物絮团替代饵料对罗非鱼生长、
水体环境及水体微生物多样性的影响
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第03期
页码:
167-174
栏目:
畜牧兽医与水产蚕桑
出版日期:
2020-03-15

文章信息/Info

Title:
Effects of photosynthetic bacteria-enhanced biological floc replacement diets on tilapia growth, water environment, and water microbial diversity
作者:
董媛媛1 范立民2 裘丽萍2 李丹丹2 秦璐1 东新旭1 陈家长12
1.南京农业大学无锡渔业学院,江苏无锡 214081;
2.中国水产科学研究院淡水渔业研究中心/农业农村部长江下游渔业生态环境监测中心,江苏无锡 214081
Author(s):
Dong Yuanyuanet al
关键词:
光合细菌生物絮团饵料替代微生物群落罗非鱼
Keywords:
-
分类号:
S965.125;S182
DOI:
-
文献标志码:
A
摘要:
以吉富罗非鱼(Oreochromis niloticus)为研究对象,以外加葡萄糖为碳源促进生物絮团的形成以替代部分饵料,设置3个梯度,分别为A组(全部投喂饵料)、B组(替代10%的饵料)和C组(替代20%的饵料),探究光合细菌强化生物絮团对罗非鱼生长及水环境状况的影响,同时采用Biolog-ECO技术研究养殖水中微生物碳代谢多样性的变化。结果表明,不同饵料替代梯度下的水体微生物碳源的利用程度均随着培养时间的延长而升高,整体表现为替代10%的饵料>全部投喂饵料>替代20%的饵料;合适的替代率既能增强水体微生物对碳源的整体利用能力,又能节约养殖成本。主成分分析表明,不同饵料替代梯度下的水体微生物群落碳源代谢具有明显差异,其中聚合糖类、酯类和氨基酸类是水体微生物的偏好碳源,而胺类和酸类的利用率较低。
Abstract:
-

参考文献/References:

[1]Dey M M,Gupta M V. Socioeconomics of disseminating genetically improved Nile tilapia in Asia:an introduction[J]. Aquaculture Economics & Management,2000,4(1/2):5-11.
[2]Fierer N,Bradford M A,Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364.
[3]Konopka A,Oliver L,Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology,1998,35(2):103-115.
[4]郑耀通,胡开辉,高树芳,等. 高效净化水产养殖水域紫色非硫光合细菌的分离和筛选[J]. 福建农业大学学报,1998,27(3):257-260.
[5]Garland J L,Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology,1991,57(8):2351-2359.
[6]Garland J L. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology,1997,24(4):289-300.
[7]沈锦玉,尹文林,刘问,等. 光合细菌HZPSB对水产养殖水质的改良和对鱼类促生长作用[J]. 科技通报,2004,20(6):481-484.
[8]Vrati S. Single cell protein production by photosynthetic bacteria grown on clarified effluents of biogas plants[J]. Applied Microbiology and Biotechnology,1984,19(3):199-202.
[9]杨章武,张哲,葛辉,等. 几种不同碳源对凡纳滨对虾生物絮团技术育苗效果的影响[J]. 福建水产,2015,37(5):347-352.
[10]刘克明,尤宏争,马林,等. 不同碳源培养生物絮团对南美白对虾养殖影响试验[J]. 河北渔业,2019(4):28-30.
[11]王潮辉. 添加葡萄糖对凡纳滨对虾零水交换养殖系统中水环境调控的研究[D]. 上海:上海海洋大学,2016.
[12]王娇,马灌楠,邓元告,等. 葡萄糖和盐度对卤虫生长、养殖系统生物絮团形成及其微生物多样性的影响[J]. 海洋与湖沼,2015,46(2):372-380.
[13]陈家长,胡庚东,吴伟,等. 有益微生物在中华绒螯蟹养殖中应用的研究[J]. 上海水产大学学报,2003,12(3):271-273.
[14]闫法军,田相利,董双林,等. 刺参养殖池塘水体微生物群落功能多样性的季节变化[J]. 应用生态学报,2014,25(5):1499-1505.
[15]李志斐,王广军,谢骏,等. 草鱼养殖池塘生物膜固着微生物群落碳代谢Biolog分析[J]. 水产学报,2014,38(12):1985-1995.
[16]王潮辉,高启,谭洪新,等. 生物絮凝系统构建过程对吉富罗非鱼免疫酶和生长的影响[J]. 中国水产科学,2015,22(4):707-715.
[17]李朝兵,李志斐,韩林强,等. 生物絮团技术对室内培育小规格罗非鱼种的影响[J]. 水产养殖,2015,36(7):29-35.
[18]刘文畅,罗国芝,谭洪新. 无碳源投加对水体重复使用的罗非鱼生物絮团养殖系统中水质、生长性能和微生物群落的影响[C]// 2017年中国水产学会学术年会论文摘要集. 北京:中国水产学会,2017.
[19]Crab R,Chielens B,Mathieu W,et al. The effect of different carbon sources on the nutritional value of bioflocs,a feed for Macrobrachium rosenbergii postlarvae[J]. Aquaculture Research,2010,41(5):559-567.
[20]徐武杰. 生物絮团在对虾零水交换养殖系统中功能效应的研究与应用[D]. 青岛:中国海洋大学,2014.
[21]唐汇娟,张轩豪,孔重敏,等. 零换水条件下枯草芽孢杆菌和糖蜜对水质和罗非鱼生长的影响[J]. 华中农业大学学报,2018,37(3):82-86.
[22]McIntosh D,Samocha T M,Jones E R,et al. The effect of a commercial bacterial supplement on the high-density culturing of Litopenaeus vannamei with a low-protein diet in an outdoor tank system and no water exchange[J]. Aquacultural Engineering,2000,21(3):215-227.
[23]Choi K H,Dobbs F C. Comparison of two kinds of Biolog microplates (GN and ECO) in their ability to distinguish among aquatic microbial communities[J]. Journal of Microbiological Methods,1999,36(3):203-213.
[24]Martínez-Córdova L R,Martínez-Porchas M,Emerenciano M G C,et al. From microbes to fish the next revolution in food production[J]. Critical Reviews in Biotechnology,2017,37(3):287-295.
[25]卢炳国,王海英,谢骏,等. 不同C/N水平对草鱼池生物絮团的形成及其水质的影响[J]. 水产学报,2013,37(8):1220-1228.
[26]李彦,刘利平,赵广学,等. 养殖水体中添加碳源对水质及罗非鱼生长的影响[J]. 大连海洋大学学报,2013,28(1):55-60.
[27]尚谦. 木薯渣在生物絮团处理养殖废水技术中的应用性研究[D]. 南宁:广西大学,2017.
[28]唐肖峰,刘利平,帅滇,等. 碳源对花鳗鲡养殖系统水质及生产性能的影响[J]. 大连海洋大学学报,2019,34(1):70-79.
[29]王涛,刘青松,段亚飞,等. 低C/N驯化生物絮团的自养和异养硝化性能研究[J]. 海洋渔业,2018,40(5):614-624.
[30]Schneider O,Sereti V,Eding E H,et al. Analysis of nutrient flows in integrated intensive aquaculture systems[J]. Aquacultural Engineering,2005,32(3/4):379-401.
[31]Garland J L. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization[J]. Soil Biology & Biochemistry,1996,28(2):213-221.
[32]李志斐,王广军,余德光,等. 生物絮团对养殖水体水质和微生物群落功能的影响[J]. 上海海洋大学学报,2015,24(4):503-512.
[33]史磊磊,范立民,陈家长,等. 组合填料对水质、罗非鱼生长及水体微生物群落功能多样性的影响[J]. 农业环境科学学报,2017,36(8):1618-1626.
[34]李娟. 长期不同施肥制度土壤微生物学特性及其季节变化[D]. 北京:中国农业科学院,2008.
[35]Wilén B M,Onuki M,Hermansson M,et al. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability[J]. Water Research,2008,42(8/9):2300-2308.
[36]Verma N M,Mehrotra S,Shukla A,et al. Prospective of biodiesel production utilizing microalgae as the cell factories:a comprehensive discussion[J]. African Journal of Biotechnology,2010,9(10):1402-1411.
[37]Bodík I,Blstáková A,Sedlácek S,et al. Biodiesel waste as source of organic carbon for municipal WWTP denitrification[J]. Bioresource Technology,2009,100(8):2452-2456.
[38]张哲,杨章武,葛辉,等. 不同碳源对凡纳滨对虾育苗标粗水体生物絮团的结构、营养成分、细菌群落及其水质的影响[J]. 水产学报,2019,43(3):639-649.
[39]Ballester E,Abreu P C,Cavalli R O,et al. Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system[J]. Aquaculture Nutrition,2010,16(2):163-172.
[40]范立民,吴伟,胡庚东,等. 主成分分析法评价多级生物系统对集约化池塘修复效果研究[J]. 中国农学通报,2010,26(23):392-396.

相似文献/References:

[1]高红,侯思琰.棉浆废液培养异养硝化菌降解土壤中硝态氮的研究[J].江苏农业科学,2014,42(06):330.
 Gao Hong,et al.Study on soil nitrate nitrogen degradation by heterotrophic nitrification bacteria cultured in cotton pulp effluent[J].Jiangsu Agricultural Sciences,2014,42(03):330.
[2]曾镭,黄雅琴,李尽哲.光合细菌对蚕豆苗农艺性状和光合特性的影响[J].江苏农业科学,2015,43(06):103.
 Zeng Lei,et al.Effects of photosynthetic bacteria on agronomic traits and photosynthetic characteristics of broad bean seedlings[J].Jiangsu Agricultural Sciences,2015,43(03):103.
[3]易馨,杨开智,童晋,等.响应面法对光合细菌还原亚碲酸盐条件的优化[J].江苏农业科学,2017,45(10):217.
 Yi Xin,et al.Optimization of tellurite reduction conditions of photosynthetic bacteria group by response surface method[J].Jiangsu Agricultural Sciences,2017,45(03):217.
[4]杨彦豪,黄光华,冯鹏霏,等.生物絮团技术在罗氏沼虾养殖中的应用前景[J].江苏农业科学,2018,46(15):10.
 Yang Yanhao,et al.Application prospect of bio-flocs technology in Macrobrachium rosenbergii culture[J].Jiangsu Agricultural Sciences,2018,46(03):10.
[5]周凤鸣,缪礼鸿,刘蒲临,等.产朊假丝酵母固体菌剂对水体生物絮团形成和氮磷去除率的影响[J].江苏农业科学,2019,47(14):295.
 Zhou Fengming,et al.Influences of Candida utilis solid inoculum on bio-floc formation and removal of nitrogen and phosphorous[J].Jiangsu Agricultural Sciences,2019,47(03):295.
[6]张秀霞,王冬梅,李军涛,等.1株热带海洋光合细菌的筛选、鉴定及水质净化能力[J].江苏农业科学,2020,48(04):278.
 Zhang Xiuxia,et al.Screening,identification and water purification ability of a photosynthetic bacteria from tropical ocean[J].Jiangsu Agricultural Sciences,2020,48(03):278.
[7]张欢,卢海凤,孟涛,等.光合细菌在种植业上的应用研究进展[J].江苏农业科学,2020,48(8):18.
 Zhang Huan,et al.Research progress on application of photosynthetic bacteria in planting industry[J].Jiangsu Agricultural Sciences,2020,48(03):18.

备注/Memo

备注/Memo:
收稿日期:2019-10-25
基金项目:现代农业产业技术体系建设专项(编号:CARS-46)。
作者简介:董媛媛(1992—),女,山东德州人,硕士研究生,研究方向为渔业资源环境监测与保护。E-mail:2437836556@qq.com。
通信作者:陈家长,硕士,研究员,研究方向为渔业资源环境监测与保护、生态环境评价等。E-mail:chenjz@ffrc.cn。
更新日期/Last Update: 2020-02-05