|本期目录/Table of Contents|

[1]相倩倩,张云权,王小花,等.化学计量学方法在蜂蜜鉴伪中的应用研究进展[J].江苏农业科学,2020,48(8):32-40.
 Xiang Qianqian,et al.Research progress on application of chemometrics methods in authentic identification of honey[J].Jiangsu Agricultural Sciences,2020,48(8):32-40.
点击复制

化学计量学方法在蜂蜜鉴伪中的应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第8期
页码:
32-40
栏目:
专论与综述
出版日期:
2020-04-20

文章信息/Info

Title:
Research progress on application of chemometrics methods in authentic identification of honey
作者:
相倩倩1 张云权2 王小花3 张晓甜1 黄文耀1
1.湖北省疾病预防控制中心卫生检验检测研究所/应用毒理湖北重点实验室,湖北武汉 430079;
2.武汉科技大学公共卫生学院,湖北武汉 430065; 3.湖北省食品质量安全监督检验研究院,湖北武汉 430075
Author(s):
Xiang Qianqianet al
关键词:
蜂蜜鉴伪分析技术模式识别化学计量学应用
Keywords:
-
分类号:
TS207.3
DOI:
-
文献标志码:
A
摘要:
蜂蜜作为一种天然甜味剂,不仅具有较高的营养价值还具有一定的药理功能。然而,当前市售蜂蜜的真实性面临巨大挑战,尤其是外源糖浆掺假和低价杂花蜜的冒充。随着科技的发展,现代分析技术结合化学计量学手段已被广泛应用于蜂蜜的掺假及溯源等研究中。通过详细介绍红外、核磁共振等常见的分析技术、谱图数据的提取和预处理以及模式识别方法的使用,系统地疏理化学计量学方法在蜂蜜鉴伪中的应用。该研究可为食品领域从业人员进行蜂蜜品质鉴定,及监管部门制定蜂蜜检测新标准提供新思路。
Abstract:
-

参考文献/References:

[1]中华人民共和国卫生部. 蜂蜜:GB 14963—2011[S]. 北京:中国标准出版社,2011.
[2]Boffo E F,Tavares L A,Tobias A,et al. Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods[J]. LWT - Food Science and Technology,2012,49(1):55-63.
[3]Olga E,María F G,Carmen S M. Differentiation of blossom honey and honeydew honey from northwest Spain[J]. Agriculture,2012,2(4):25-37.
[4]Jamróz M K,Paradowska K,Zawada K,et al. 1H and 13C NMR-based sugar profiling with chemometric analysis and antioxidant activity of herbhoneys and honeys[J]. Journal of the Science of Food and Agriculture,2014,94(2):246-255.
[5]Piljac-egarac J,Stipcˇevic' T. Antioxidant properties and phenolic content of different floral origin honeys[J]. Journal of ApiProduct and ApiMedical Science,2009,1(2):43-50.
[6]Molan P C. The evidence supporting the use of honey as a wound dressing[J]. The International Journal of Lower Extremity Wounds,2006,5(1):40-54.
[7]裴高璞,史波林,赵镭,等. 蜂蜜质量市场动态及掺假检测方法现状分析[J]. 食品科学,2013,34(15):329-336.
[8]Siddiqui A J,Musharraf S G,Choudhary M I,et al. Application of analytical methods in authentication and adulteration of honey[J]. Food Chemistry,2017,217:687-698.
[9]Soares S,Amaral J S,Oliveira M,et al. A comprehensive review on the main honey authentication issues:production and origin[J]. Comprehensive Reviews in Food Science and Food Safety,2017,16(5):1072-1100.
[10]陈雷,刘红兵,罗立廷. 氢核磁共振结合正交偏最小二乘法对油菜蜜中果葡糖浆掺假的判别分析[J]. 食品科学,2017,38(4):275-282.
[11]Nunes C A. Vibrational spectroscopy and chemometrics to assess authenticity,adulteration and intrinsic quality parameters of edible oils and fats[J]. Food Research International,2014,60:255-261.
[12]Ma H L,Wang J W,Chen Y J,et al. Rapid authentication of starch adulterations in ultrafine granular powder of Shanyao by near-infrared spectroscopy coupled with chemometric methods[J]. Food Chemistry,2017,215:108-115.
[13]Shi T,Zhu M T,Chen Y,et al. 1H NMR combined with chemometrics for the rapid detection of adulteration in camellia oils[J]. Food Chemistry,2018,242:308-315.
[14]Guler A,Kocaokutgen H,Garipoglu A V,et al. Detection of adulterated honey produced by honeybee (Apis mellifera L.) colonies fed with different levels of commercial industrial sugar (C3 and C4 plants) syrups by the carbon isotope ratio analysis[J]. Food Chem,2014,155:155-160.
[15]Dong H,Xiao K J,Luo D H,et al. Adulteration identification of commercial honey with the C-4 sugar content of negative values by an elemental analyzer and liquid chromatography coupled to isotope ratio mass spectroscopy[J]. Journal of Agricultural and Food Chemistry,2016,64(16):3258-3265.
[16]Luo D H,Luo H Y,Dong H,et al. Hydrogen(2H/1H)combined with carbon(13C/12C)isotope ratios analysis to determine the adulteration of commercial honey[J]. Food Analytical Methods,2015,9(1):255-262.
[17]Wang S Q,Guo Q L,Wang L L,et al. Detection of honey adulteration with starch syrup by high performance liquid chromatography[J]. Food Chemistry,2015,172:669-674.
[18]Yilmaz M T,Tatlisu N B,Toker O S,et al. Steady,dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups:correlations with HPLC-RID results[J]. Food Research International,2014,64:634-646.
[19]Wang J M,Xue X F,Du X J,et al. Identification of acacia honey adulteration with rape honey using liquid chromatography-electrochemical detection and chemometrics[J]. Food Analytical Methods,2014,7(10):2003-2012.
[20]Bougrini M,Tahri K,Saidi T,et al. Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue[J]. Food Analytical Methods,2016,9(8):2161-2173.
[21]Gallardo-Velázquez T,Osorio-Revilla G,Zuiga-de Loa M,et al. Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys[J]. Food Research International,2009,42(3):313-318.
[22]Almaleeh A A,Adom A H,Fathinul-Syahir A S. Classification of the botanical origin for Malaysian honey using UV-vis spectroscopy[C]. AIP Conference Proceedings,2017,1808:020008.
[23]李水芳. 蜂蜜质量的近红外光谱分析技术研究[D]. 长沙:中南林业科技大学,2012.
[24]Zhu X R,Li S F,Shan Y,et al. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics[J]. Journal of Food Engineering,2010,101(1):92-97.
[25]Sergiel I,Pohl P,Biesaga M,et al. Suitability of three-dimensional synchronous fluorescence spectroscopy for fingerprint analysis of honey samples with reference to their phenolic profiles[J]. Food Chemistry,2014,145:319-326.
[26]田广军. 基于三维荧光谱参数化及模式识别的水中油类鉴别与测定[D]. 秦皇岛:燕山大学,2005.
[27]Chen Q S,Qi S,Li H H,et al. Determination of rice syrup adulterant concentration in honey using three-dimensional fluorescence spectra and multivariate calibrations[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2014,131:177-182.
[28]赵杰文,韩小燕,陈全胜,等. 基于三维荧光光谱技术对掺假蜂蜜无损鉴别研究[J]. 光谱学与光谱分析,2013,33(6):1626-1630.
[29]裘姗姗. 基于电子鼻、电子舌及其融合技术对柑橘品质的检测[D]. 杭州:浙江大学,2016.
[30]Peris M,Escuder-Gilabert L. Electronic noses and tongues to assess food authenticity and adulteration[J]. Trends in Food Science & Technology,2016,58:40-54.
[31]Wei Z B,Wang J,Liao W Y. Technique potential for classification of honey by electronic tongue[J]. Journal of Food Engineering,2009,94(3/4):260-266.
[32]Ling G N. A physical theory of the living state:the association-induction hypothesis[J]. Academic Medicine,1963,38(6):530.
[33]Ribeiro R O R,Mársico E T,da Silva Carneiro C,et al. Classification of Brazilian honeys by physical and chemical analytical methods and low field nuclear magnetic resonance (LF 1H NMR)[J]. LWT-Food Science and Technology,2014,55(1):90-95.
[34]Ribeiro R O R,Mársico E T,da Silva Carneiro C,et al. Detection of honey adulteration of high fructose corn syrup by low field nuclear magnetic resonance (LF-1H-NMR)[J]. Journal of Food Engineering,2014,135:39-43.
[35]徐姗. 肿瘤发生发展对非涉及器官代谢组的影响规律研究[D]. 武汉:华中师范大学,2016.
[36]王小花. 基于NMR技术的国内外食醋质量与安全研究[D]. 武汉:中国科学院大学(中国科学院武汉物理与数学研究所),2016.
[37]Borràs E,Ferré J,Boqué R,et al. Data fusion methodologies for food and beverage authentication and quality assessment - a review[J]. Analytica Chimica Acta,2015,891:1-14.
[38]Shen F,Wu Q,Su A,et al. Detection of adulteration in freshly squeezed orange juice by electronic nose and infrared spectroscopy[J]. Czech Journal of Food Sciences,2016,34(3):224-232.
[39]Alamprese C,Casale M,Sinelli N,et al. Detection of minced beef adulteration with Turkey meat by UV-vis,NIR and MIR spectroscopy[J]. LWT - Food Science and Technology,2013,53(1):225-232.
[40]Ottavian M,Fasolato L,Serva L,et al. Data fusion for food authentication:fresh/frozen-thawed discrimination in West African goatfish(Pseudupeneus prayensis)fillets[J]. Food and Bioprocess Technology,2013,7(4):1025-1036.
[41]Louw L,Roux K,Tredoux A,et al. Characterization of selected South African young cultivar wines using FTMIR spectroscopy,gas chromatography,and multivariate data analysis[J]. Journal of Agricultural and Food Chemistry,2009,57(7):2623-2632.
[42]史海成,王春艳,张媛媛. 浅谈模式识别[J]. 今日科苑,2007(22):169.
[43]Biancolillo A,Bucci R,Magrì A L,et al. Data-fusion for multiplatform characterization of an Italian craft beer aimed at its authentication[J]. Analytica Chimica Acta,2014,820:23-31.
[44]Se K W,Ghoshal S K,Wahab R A,et al. A simple approach for rapid detection and quantification of adulterants in stingless bees (Heterotrigona itama) honey[J]. Food Research International,2018,105:453-460.
[45]Schievano E,Peggion E,Mammi S. 1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin[J]. Journal of Agricultural and Food Chemistry,2010,58(1):57-65.
[46]Tiwari K,Biswas S,Tudu B,et al. Development of metal oxide-modified carbon paste based sensor for honey analysis using electronic tongue[J]. Materials Today:Proceedings,2017,4(9):9500-9504.
[47]Gan Z L,Yang Y,Li J,et al. Using sensor and spectral analysis to classify botanical origin and determine adulteration of raw honey[J]. Journal of Food Engineering,2016,178:151-158.
[48]Minaei S,Shafiee S,Polder G,et al. VIS/NIR imaging application for honey floral origin determination[J]. Infrared Physics & Technology,2017,86:218-225.
[49]Bázár G,Romvári R,Szabó A,et al. NIR detection of honey adulteration reveals differences in water spectral pattern[J]. Food Chemistry,2016,194:873-880.
[50]Chen H,Jin L H,Chang Q Y,et al. Discrimination of botanical origins for Chinese honey according to free amino acids content by high-performance liquid chromatography with fluorescence detection with chemometric approaches[J]. Journal of the Science of Food and Agriculture,2017,97(7):2042-2049.
[51]Arvanitoyannis I S,Chalhoub C,Gotsiou P,et al. Novel quality control methods in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity[J]. Critical Reviews in Food Science and Nutrition,2005,45(3):193-203.
[52]Tuberoso C I,Jerkovic′ I,Sarais G,et al. Color evaluation of Seventeen European unifloral honey types by means of spectrophotometrically determined CIE L* C*abab chromaticity coordinates[J]. Food Chemistry,2014,145:284-291.
[53]Wu L,Du B,Heyden Y V,et al. Recent advancements in detecting sugar-based adulterants in honey-a challenge[J]. Trac Trends in Analytical Chemistry,2016,86:25-38.
[54]Oroian M,Ropciuc S,Paduret S,et al. Authentication of romanian honeys based on physicochemical properties,texture and chemometric[J]. Journal of Food Science and Technology,2017,54(13):4240-4250.
[55]Amiry S,Esmaiili M,Alizadeh M. Classification of adulterated with date and invert syrups[J]. Food Chem,2017,224:390-397.
[56]Nayik G A,Suhag Y,Majid I,et al. Discrimination of high altitude Indian honey by chemometric approach according to their antioxidant properties and macro minerals[J]. Journal of the Saudi Society of Agricultural Sciences,2018,17(2):200-207.
[57]Gerhardt N,Birkenmeier M,Schwolow S,et al. Volatile-Compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey[J]. Analytical Chemistry,2018,90(3):1777-1785.
[58]Gerhardt N,Birkenmeier M,Kuballa T,et al. Differentiation of the botanical origin of honeys by fast,non-targeted 1H-NMR profiling and chemometric tools as alternative authenticity screening tool[C]//Proceedings of the ⅩⅢ international conference on the applications of magnetic resonance in food science,2016.
[59]Eriksson L,Trygg J,Wold S. CV-ANOVA for significance testing of PLS and OPLS models[J]. Journal of Chemometrics,2008,22(11/12):594-600.
[60]Li S F,Zhang X,Shan Y,et al. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy[J]. Food Chemistry,2017,218:231-236.
[61]Jandric′ Z,Haughey S A,Frew R D,et al. Discrimination of honey of different floral origins by a combination of various chemical parameters[J]. Food Chemistry,2015,189:52-59.
[62]Zuccato V,Finotello C,Menegazzo I,et al. Entomological authentication of stingless bee honey by 1H NMR-based metabolomics approach[J]. Food Control,2017,82:145-153.
[63]Zheng X,Zhao Y R,Wu H F,et al. Origin identification and quantitative analysis of honeys by nuclear magnetic resonance and chemometric techniques[J]. Food Analytical Methods,2015,9(6):1470-1479.
[64]Maesschalck R D,Candolfi A,Massart D L,et al. Decision criteria for soft Independent modelling of class analogy applied to near infrared data[J]. Chemometrics & Intelligent Laboratory Systems,1999,47(1):65-77.
[65]Mehretie S,Al Riza D F,Yoshito S,et al. Classification of raw Ethiopian honeys using front face fluorescence spectra with multivariate analysis[J]. Food Control,2018,84:83-88.
[66]Aliferis K A,Tarantilis P A,Harizanis P C,et al. Botanical discrimination and classification of honey samples applying gas chromatography/mass spectrometry fingerprinting of headspace volatile compounds[J]. Food Chemistry,2010,121(3):856-862.
[67]Herrero Latorre C,Pea Crecente R M,García Martín S,et al. A fast chemometric procedure based on NIR data for authentication of honey with protected geographical indication[J]. Food Chemistry,2013,141(4):3559-3565.
[68]Tahir H E,Xiaobo Z,Zhihua L,et al. Rapid prediction of phenolic compounds and antioxidant activity of Sudanese honey using Raman and Fourier transform infrared (FT-IR) spectroscopy[J]. Food Chemistry,2017,226:202-211.

相似文献/References:

[1]汤小芳,张海波,祁贵国.市售蜂蜜中糖类成分含量的快速测定[J].江苏农业科学,2013,41(10):270.
 Tang Xiaofang,et al.Rapid determination of saccharides content in honey sold in the market[J].Jiangsu Agricultural Sciences,2013,41(8):270.
[2]薛茗阁,卜翠萍,赵祥祥,等.3种单花蜜总黄酮含量测定的比较[J].江苏农业科学,2016,44(04):341.
 Xue Mingge,et al.Determination and comparison of total flavonoids content in three kinds of monofloral honey[J].Jiangsu Agricultural Sciences,2016,44(8):341.
[3]杨勇,罗奕,吴琳琳,等.薄层色谱法测定牛奶、蜂蜜中6种氟喹诺酮类药物残留[J].江苏农业科学,2015,43(10):380.
 Yang Yong,et al.Determination of 6 kinds of fluoroquinolone drugs residues in milk and honey by thin-layer chromatography[J].Jiangsu Agricultural Sciences,2015,43(8):380.
[4]牛灿杰,张慧,陈小珍.果汁掺假鉴别检测技术研究进展[J].江苏农业科学,2015,43(06):292.
 Niu Canjie,et al.Research progress on detection of fruit juice adulteration[J].Jiangsu Agricultural Sciences,2015,43(8):292.

备注/Memo

备注/Memo:
收稿日期:2019-03-18
基金项目:湖北省卫生健康委面上项目(编号:S2017WJ10);湖北省食品质量安全监督检验研究院自主立项科研项目(编号:ZZLX2017001);湖北省自然科学基金(编号:2016CFB212)。
作者简介:相倩倩(1991—),女,江苏扬州人,硕士,助理工程师,主要从事食品检验及相关鉴伪研究。E-mail:617641206@qq.com。
通信作者:张云权,博士,主要从事数据挖掘方法及应用研究,E-mail:Yun-quanZhang@whu.edu.cn;黄文耀,主任技师,主要从事环境与健康关系研究,E-mail:313234967@qq.com。
更新日期/Last Update: 2020-04-20