|本期目录/Table of Contents|

[1]吴照祥,刘巧丽,李辉虎,等.有机肥对退化红壤中细菌群落功能组成影响的PICRUSt基因预测分析[J].江苏农业科学,2021,49(16):60-66.
 Wu Zhaoxiang,et al.Effects of organic fertilizer on bacterial functional composition in degraded red soil by PICRUSt functional prediction[J].Jiangsu Agricultural Sciences,2021,49(16):60-66.
点击复制

有机肥对退化红壤中细菌群落功能组成影响的PICRUSt基因预测分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第16期
页码:
60-66
栏目:
生物技术
出版日期:
2021-08-20

文章信息/Info

Title:
Effects of organic fertilizer on bacterial functional composition in degraded red soil by PICRUSt functional prediction
作者:
吴照祥1刘巧丽1李辉虎1钟永达1叶昌炎2余发新1
1.江西省科学院生物资源研究所/江西省观赏植物遗传改良重点实验室,江西南昌 330096; 2.江西神元湖农业科技发展有限公司,江西安福 343200
Author(s):
Wu Zhaoxianget al
关键词:
PICRUSt退化红壤生态修复细菌群落功能基因预测
Keywords:
-
分类号:
S154.38+1
DOI:
-
文献标志码:
A
摘要:
为探讨不同修复措施对南方典型退化红壤细菌群落功能组成的影响,设置单施生物炭(B)、微生物有机肥(OF)、化学肥料(CF)、生物炭配施微生物有机肥(BO)、生物炭配施化学肥料(BC)以及空白对照(CK)等6种修复处理方式并进行车前草的盆栽试验,采用细菌16S rRNA基因的高通量测序技术并结合PICRUSt功能预测分析,研究不同修复处理方式下退化红壤细菌群落结构及其功能组成的变化。结果表明,微生物有机肥和化学肥料对车前草根际土壤细菌群落结构与功能组成具有显著的影响(F2,15=25.55,R2=0.773 1,P<0.001;F2,15=17.22,R2=0.696 6,P<0.001),而生物炭的作用不显著(P>0.05);微生物有机肥处理车前草根际土壤细菌物种多样性显著增加,增幅达到17.30%,但是化学肥料显著降低细菌物种多样性,降幅达21.25%;微生物有机肥增加生物代谢途径和氮循环途径功能基因丰度,促进氮异化还原、反硝化作用和固氮作用过程,有利于土壤氮素的维持和土壤质量的改善,而化学肥料施用则相反。另外,根际土壤细菌物种多样性跟土壤的pH值显著正相关,跟碱解氮和有效磷等土壤养分含量显著负相关。本研究明确了退化红壤微生物群落功能组成以及氮循环相关功能基因对修复措施的响应,为南方退化红壤的生态修复与农业生产提供理论依据。
Abstract:
-

参考文献/References:

[1]李庆逵. 中国红壤[M]. 北京:科学出版社,1983.
[2]江西土地资源管理局. 江西土壤[M]. 北京:中国农业科学技术出版社,1991.
[3]吴卓,戴尔阜,林媚珍. 气候变化和人类活动对南方红壤丘陵区森林生态系统影响模拟研究——以江西泰和县为例[J]. 地理研究,2018,37(11):2141-2152.
[4]余作岳,彭少麟,丁明懋. 热带亚热带退化生态系统植被恢复生态学研究[M]. 广州:广东科技出版社,1996.
[5]黄小春,宋小妹. 江西低丘红壤水土流失区植被恢复策略及理论探讨[J]. 江西林业科技,2008(6):42-47.
[6]Doran J W. Defining soil quality for sustainable environment[M]. Wisconsin:Soil Science Society of America,1994.
[7]Cruz-Paredes C,Wallander H,Kjller R,et al. Using community trait-distributions to assign microbial responses to pH changes and Cd in forest soils treated with wood ash[J]. Soil Biology and Biochemistry,2017,112:153-164.
[8]Harsch M A,Hulme P E,McGlone M S,et al. Are treelines advancing? A global meta-analysis of treeline response to climate warming[J]. Ecology Letters,2009,12(10):1040-1049.
[9]Shen C C,Shi Y,Ni Y Y,et al. Dramatic increases of soil microbial functional gene diversity at the treeline ecotone of Changbai Mountain[J]. Frontiers in Microbiology,2016,7:1184.
[10]Yuan C L,Mou C X,Wu W L,et al. Effect of different fertilization treatments on indole-3-acetic acid producing bacteria in soil[J]. Journal of Soils and Sediments,2011,11(2):322-329.
[11]Chantigny M H. Dissolved and water-extractable organic matter in soils:A review on the influence of land use and management practices[J]. Geoderma,2003,113:357-380.
[12]Cornfield A H. Ammonia released on treating soils with N sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soils[J]. Nature,1960,187:260-261.
[13]Gyaneshwar P,Kumar G N,Parekh L J,et al. Role of soil microorganisms in improving P nutrition of plants[M]//Food security in nutrient-stressed environments:exploiting plants genetic capabilities. Netherlands:Springer,2002.
[14]Caporaso J G,Kuczynski J,Stombaugh J,et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods,2010,7(5):335-336.
[15]Edgar R C,Haas B J,Clemente J C,et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics,2011,27(16):2194-2200.
[16]Pruesse E,Quast C,Knittel K,et al. SILVA:a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[J]. Nucleic Acids Research,2007,35(21):7188-7196.
[17]R Development Core Team. R:a language and environment for statistical computing[M]. Vienna:the R Foundation for Statistical Computing,2012.
[18]李兰君,刘玳含,刘建斌,等. 连作对设施番茄土壤微生物及酶活性的影响[J]. 江苏农业科学,2018,46(18):130-134.
[19]王涛,乔卫花,李玉奇,等. 轮作和微生物菌肥对黄瓜连作土壤理化性状及生物活性的影响[J]. 土壤通报,2011,42(3):578-583.
[20]Kolton M,Graber E,Tsehansky L,et al. Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere[J]. The New Phytologist,2017,213(3):1393-1404.
[21]Qiu M H,Zhang R F,Xue C,et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils,2012,48(7):807-816.
[22]Zhen Z,Liu H T,Wang N,et al. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China[J]. PLoS One,2014,9(10):e108555.
[23]Fierer N,Bradford M A,Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology,2007,88(6):1354-1364.
[24]Zhang Y C,Wang X,Liu B J,et al. Comparative study of individual and co-application of biochar and wood vinegar on blueberry fruit yield and nutritional quality[J]. Chemosphere,2020,246:125699.
[25]方明,李洁,赖欣,等. 短期生物炭刺激对红壤和潮土微生物群落的影响[J]. 江苏农业科学,2020,48(11):250-258.
[26]任灵玲. 长期施肥棕壤中氮代谢功能基因的变化特征[D]. 沈阳:沈阳农业大学,2019.
[27]Welsh A,Chee-Sanford J C,Connor L M,et al. Refined NrfA phylogeny improves PCR-based nrfA gene detection[J]. Applied and Environmental Microbiology,2014,80(7):2110-2119.
[28]陈晨,许欣,毕智超,等. 生物炭和有机肥对菜地土壤N2O排放及硝化、反硝化微生物功能基因丰度的影响[J]. 环境科学学报,2017,37(5):1912-1920.
[29]Yin C,Fan F L,Song A L,et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community[J]. European Journal of Soil Biology,2014,65:47-56.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2020-12-10
基金项目:国家自然科学基金(编号:31960230);江西省重点研发计划(编号:20192ACB60014)。
作者简介:吴照祥(1985—),男,安徽铜陵人,博士,助理研究员,从事土壤质量改良研究。E-mail:wuzhaoxiang2004@126.com。
通信作者:余发新,博士,研究员,从事林木遗传育种研究。 E-mail:yufaxin@jxas.ac.cn。
更新日期/Last Update: 2021-08-20