|本期目录/Table of Contents|

[1]彭金龙,李萌,褚荣浩,等.日光诱导叶绿素荧光反演及其在植被环境胁迫监测中的研究进展[J].江苏农业科学,2021,49(24):29-40.
 Peng Jinlong,et al.Research progress of sun-induced chlorophyll fluorescence inversion and its application in vegetation environmental stress monitoring[J].Jiangsu Agricultural Sciences,2021,49(24):29-40.
点击复制

日光诱导叶绿素荧光反演及其在植被
环境胁迫监测中的研究进展
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第24期
页码:
29-40
栏目:
专论与综述
出版日期:
2021-12-20

文章信息/Info

Title:
Research progress of sun-induced chlorophyll fluorescence inversion and its application in vegetation environmental stress monitoring
作者:
彭金龙1 李萌1 褚荣浩2 倪锋1 谢鹏飞1 蒋跃林1 申双和3
1.安徽农业大学资源与环境学院,安徽合肥 230036; 2.安徽省公共气象服务中心/安徽省气象局,安徽合肥 230031;3.南京信息工程大学应用气象学院,江苏南京 210044
Author(s):
Peng Jinlonget al
关键词:
日光诱导叶绿素荧光反演植被胁迫监测遥感环境胁迫
Keywords:
-
分类号:
S127;S184
DOI:
-
文献标志码:
A
摘要:
日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)作为光合作用的直接探针,能对植物的生理状态作出快速、灵敏的响应,与传统监测方法相比具备早期监测植被环境胁迫的能力,弥补了当前植被遥感监测的不足。因此,SIF在植被环境胁迫监测中具有良好的应用前景。然而,有很多因素会对SIF产生影响,使得SIF对植被环境胁迫监测的应用变得更为复杂。本文首先介绍了SIF的来源和反演方法,对比分析了各种反演方法的优缺点,剖析了SIF的影响因素,总结了目前SIF在植被环境胁迫监测中的应用研究,在此基础上指出目前SIF在植被环境胁迫监测应用领域中的不足,最终提出今后可以从SIF的影响因素、反演过程及SIF与植被环境胁迫之间的机制关系等方面开展进一步的研究,旨在为陆地生态系统碳循环及植被胁迫监测等提供理论支持。
Abstract:
-

参考文献/References:

[1]黄鹏. 基于日光诱导叶绿素荧光的陆地总初级生产力估算[D]. 武汉:武汉理工大学,2019.
[2]张永江. 植物叶绿素荧光被动遥感探测及应用研究[D]. 杭州:浙江大学,2006.
[3]刘青瑞,居为民,张永光,等. 日光诱导叶绿素荧光估算中国典型生态系统总初级生产力的能力[J]. 遥感技术与应用,2017,32(2):363-373.
[4]王冉,刘志刚,杨沛琦. 植物日光诱导叶绿素荧光的遥感原理及研究进展[J]. 地球科学进展,2012,27(11):1221-1228.
[5]章钊颖,王松寒,邱博,等. 日光诱导叶绿素荧光遥感反演及碳循环应用进展[J]. 遥感学报,2019,23(1):37-52.
[6]Frankenberg C,Fisher J B,Worden J,et al. New global observations of the terrestrial carbon cycle from GOSAT:Patterns of plant fluorescence with gross primary productivity[J]. Geophysical Research Letters,2011,38(17):351-365.
[7]Joiner J,Yoshida Y,Vasilkov A P,et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects:simulations and space-based observations from SCIAMACHY and GOSAT[J]. Atmospheric Measurement Techniques,2012,5:809-829.
[8]Joiner J,Guanter L,Lindstrot R,et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements:methodology,simulations,and application to GOME-2[J]. Atmospheric Measurement Techniques,2013,6:2803-2823.
[9]Khler P,Guanter L,Joiner J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data[J]. Atmospheric Measurement Techniques,2015,8:2589-2608.
[10]Pickett S T A,Cadanasso M L. 景观生态学:生态系统的空间异质性[J]. 生态学杂志,1999,18(6):71-74.
[11]Frankenberg C,ODell C,Berry J,et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2[J]. Remote Sensing of Environment,2014,147:1-12.
[12]关琳琳. 基于叶绿素荧光的植被总初级生产力估算[D]. 北京:中国科学院大学(中国科学院遥感与数字地球研究所),2017.
[13]Sun Y,Frankenberg C,Jung M,et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2:retrieval,cross-mission comparison,and global monitoring for GPP[J]. Remote Sensing of Environment,2018,209:808-823.
[14]Du S S,Liu L Y,Liu X J,et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite[J]. Science Bulletin,2018,63(22):1502-1512.
[15]刘雷震,武建军,周洪奎,等. 叶绿素荧光及其在水分胁迫监测中的研究进展[J]. 光谱学与光谱分析,2017,37(9):2780-2787.
[16]问静怡. 基于日光诱导荧光的水稻铜胁迫遥感监测机理研究[D]. 杭州:杭州师范大学,2019.
[17]Yu L,Wen J,Chang C Y,et al. High-resolution global contiguous SIF of OCO-2[J]. Geophysical Research Letters,2019,46(3):1449-1458.
[18]Li X,Xiao J. A global,0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2,MODIS,and reanalysis data[J]. Remote Sensing,2019,11(5):517.
[19]Khler P,Frankenberg C,Magney T S,et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI:first results and intersensor comparison to OCO-2[J]. Geophysical Research Letters,2018,45(19):10456-10463.
[20]张永江,刘良云,侯名语,等. 植物叶绿素荧光遥感研究进展[J]. 遥感学报,2009,13(5):963-978.
[21]Mohammed G H,Colombo R,Middleton E M,et al. Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation:50 years of progress[J]. Remote Sensing of Environment,2019,231:111177.
[22]Jonard F,Cannière S D,Brüggemann N,et al. Value of sun-induced chlorophyll fluorescence for quantifying hydrological states and fluxes:current status and challenges[J]. Agricultural and Forest Meteorology,2020,291:108088.
[23]詹春晖,章钊颖,张永光. 日光诱导叶绿素荧光辐射传输模型研究进展[J]. 遥感学报,2020,24(8):945-957.
[24]丑述仁. 光化学植被指数和日光诱导叶绿素荧光与作物光合作用的关系[D]. 南京:南京大学,2018.
[25]梁寅,李军营,张云伟. 日光诱导叶绿素荧光遥感探测的研究进展[J]. 中国农学通报,2013,29(14):107-112.
[26]刘新杰. 日光诱导叶绿素荧光的遥感反演研究[D]. 北京:中国科学院大学,2016.
[27]胡姣婵. 植被冠层叶绿素荧光遥感反演及不确定性分析[D]. 北京:中国科学院大学,2015.
[28]郭健. 塔基平台的日光诱导叶绿素荧光观测与GPP估算[D]. 西安:西安科技大学,2019.
[29]程占慧,刘良云. 基于叶绿素荧光发射光谱的光能利用率探测[J]. 农业工程学报,2010,26(增刊2):74-80.
[30]Vidaver W E,Lister G R,Brooke R C,et al. A manual for the use of variable chlorophyll fluorescence in the assessment of the ecophysiology of conifer seedlings[R]. Victoria,BC:Forestry Canada,Pacific Forestry Centre and the BC Ministry of Forests,1991.
[31]Plascyk J A. The MK Ⅱ Fraunhofer Line Discriminator (FLD-Ⅱ) for airborne and orbital remote sensing of solar-stimulated luminescence[J]. Optical Engineering,1975,14(4):339-346.
[32]Maier S W,Günther K P,Stellmes M. Sun-induced fluorescence:a new tool for precision farming[M]. Germany:ASA Special Publications,2004.
[33]Gomez-Chova L,Alonsochorda L,Amoros-Lopez J,et al. Solar induced fluorescence measurements using a field spectroradiometer[J]. AIP Conference Proceedings,2006,852:274-281.
[34]Alonso L,Gomez-Chova L,Vila-Frances J,et al. Improved fraunhofer line discrimination method for vegetation fluorescence quantification[J]. IEEE Geoscience and Remote Sensing Letters,2008,5(4):620-624.
[35]Meroni M,Busetto L,Colombo R,et al. Performance of spectral fitting methods for vegetation fluorescence quantification[J]. Remote Sensing of Environment,2010,114(2):363-374.
[36]van der Tol C,Verhoef W,Timmermans J,et al. An integrated model of soil-canopy spectral radiances,photosynthesis,fluorescence,temperature and energy balance[J]. Biogeosciences,2009,6:3109-3129.
[37]McFarlane R,Hamilton C. A fluorescence based dissolved oxygen sensor[J]. Proceedings of SPIE,1987,798:324-330.
[38]张永江,黄文江,王纪华,等. 基于Fraunhofer线的小麦条锈病荧光遥感探测[J]. 中国农业科学,2007,40(1):78-83.
[39]Cheng Y B,Middleton E M,Zhang Q,et al. Integrating solar induced fluorescence and the photochemical reflectance index for estimating gross primary production in a cornfield[J]. Remote Sensing,2013,5(12):6857-6879.
[40]Damm A,Erler A,Hillen W,et al. Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence[J]. Remote Sensing of Environment,2011,115(8):1882-1892.
[41]Dobrowski S Z,Pushnik J C,Zarco-Tejada P J,et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale[J]. Remote Sensing of Environment,2005,97(3):403-414.
[42]Zarco-Tejada P J,Pushnik J C,Dobrowski S,et al. Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects[J]. Remote Sensing of Environment,2003,84(2):283-294.
[43]Perez-Priego O,Zarco-Tejada P J,Miller J R,et al. Detection of water stress in orchard trees with a high-resolution spectrometer through chlorophyll fluorescence in-filling of the O2-A band[J]. IEEE Transactions on Geoscience and Remote Sensing,2005,43(12):2860-2869.
[44]奚雷,单楠,杨沈斌,等. 基于SCOPE模型的水稻不同生育期日光诱导叶绿素荧光及GPP模拟研究[J]. 遥感技术与应用,2019,34(3):488-499.
[45]Hu J C,Liu X J,Liu L Y,et al. Evaluating the performance of the SCOPE model in simulating canopy solar-induced chlorophyll fluorescence[J]. Remote Sensing,2018,10(2):250.
[46]Verrelst J,Rivera J P,van der Tol C,et al. Global sensitivity analysis of the SCOPE model:what drives simulated canopy-leaving sun-induced fluorescence?[J]. Remote Sensing of Environment,2015,166:8-21.
[47]Yang P Q,Prikaziuk E,Verhoef W,et al. SCOPE 2.0:a model to simulate vegetated land surface fluxes and satellite signals[J]. Geoscientific Model Development,2021,14(7):4697-4712.
[48]张永江,赵春江,刘良云,等. 被动荧光探测水分胁迫对玉米叶片影响的初步研究[J]. 农业工程学报,2006,22(9):39-43.
[49]薛惠云. 基于高光谱和荧光的棉花水分胁迫探测研究[D]. 保定:河北农业大学,2013.
[50]Adams W W,Demmig-Adams B. Carotenoid composition and down regulation of photosystem Ⅱ in three conifer species during the winter[J]. Physiologia Plantarum,1994,92(3):451-458.
[51]Gitelson A A,Buschmann C,Lichtenthaler H K. Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements[J]. Journal of Plant Physiology,1998,152(2/3):283-296.
[52]Porcar-Castell A,Tyystjrvi E,Atherton J,et al. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications:mechanisms and challenges[J]. Journal of Experimental Botany,2014,65(15):4065-4095.
[53]Fukshansky L,Remisowsky A M V,McClendon J,et al. Absorption spectra of leaves corrected for scattering and distributional error:a radiative transfer and absorption statistics treatment[J]. Photochemistry and Photobiology,2010,57(3):538-555.
[54]Meroni M,Colombo R. Leaf level detection of solar induced chlorophyll fluorescence by means of a subnanometer resolution spectroradiometer[J]. Remote Sensing of Environment,2006,103(4):438-448.
[55]钱新. 基于叶绿素荧光遥感的植被干旱胁迫指数构建[D]. 南京:南京大学,2019.
[56]Almeida A C,Landsberg J J. Evaluating methods of estimating global radiation and vapor pressure deficit using a dense network of automatic weather stations in coastal Brazil[J]. Agricultural and Forest Meteorology,2003,118(3/4):237-250.
[57]Xu L K,Baldocchi D D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature[J]. Tree Physiology,2003,23(13):865-877.
[58]Daumard F,Goulas Y,Champagne S,et al. Continuous monitoring of canopy level sun-induced chlorophyll fluorescence during the growth of a sorghum field[J]. IEEE Transactions on Geoscience and Remote Sensing,2012,50(11):4292-4300.
[59]Chaves M M,Pereira J S. Water stress,CO2 and climate change[J]. Journal of Experimental Botany,1992,43(8):1131-1139.
[60]Flexas J,Bota J,Galmés J,et al. Keeping a positive carbon balance under adverse conditions:responses of photosynthesis and respiration to water stress[J]. Physiologia Plantarum,2006,127(3):343-352.
[61]郭艳春. 干旱灾害风险评估及管理对策探析[J]. 地下水,2019,44(4):148-149.
[62]纪瑞鹏,于文颖,冯锐,等. 作物对干旱胁迫的响应过程与早期识别技术研究进展[J]. 灾害学,2019,34(2):153-160.
[63]胡鹏飞. 基于多源遥感数据的农业旱情监测方法比较研究[D]. 兰州:西北师范大学,2019.
[64]张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报,2018,42(5):517-525.
[65]李萌. 夏玉米理化参数对连续水分胁迫的响应特征及遥感监测[D]. 南京:南京信息工程大学,2018.
[66]孙慧. 基于高光谱监测的干旱胁迫下冬小麦生长生理响应研究[D]. 太原:山西农业大学,2019.
[67]庞素菲. 基于温度-植被-降水指数(TVPDI)的中国北方干旱监测研究[D]. 兰州:西北师范大学,2020.
[68]杨菲菲,李世娟,刘升平,等. 作物环境胁迫高光谱遥感监测研究进展[J]. 中国农业科技导报,2020,22(4):85-93.
[69]张小强,冯彬,王云燕. 运用MODIS对我国西南地区极端干旱情况监测与评估研究——以2009—2010年遥感数据为例[J]. 环境保护科学,2020,46(1):135-141.
[70]黄泽林. 利用MODIS数据监测大面积土壤水分与农作物旱情研究[J]. 安徽农业科学,2008,36(11):4784-4787.
[71]Daumard F,Champagne S,Fournier A,et al. A field platform for continuous measurement of canopy fluorescence[J]. IEEE Transactions on Geoscience and Remote Sensing,2010,48(9):3358-3368.
[72]Ac A,Malenovsk Z,Olejnícková J,et al. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water,temperature and nitrogen stress[J]. Remote Sensing of Environment,2015,168:420-436.
[73]Liu L Z,Yang X,Zhou H K,et al. Evaluating the utility of solar-induced chlorophyll fluorescence for drought monitoring by comparison with NDVI derived from wheat canopy[J]. Science of the Total Environment,2018,625:1208-1217.
[74]王冉,刘志刚,冯海宽,等. 基于近地面高光谱影像的冬小麦日光诱导叶绿素荧光提取与分析[J]. 光谱学与光谱分析,2013,33(9):2451-2454.
[75]Zarco-Tejada P J,Berni J A J,Suárez L,et al. Imaging chlorophyll fluorescence with an airborne narrow-band multispectral camera for vegetation stress detection[J]. Remote Sensing of Environment,2009,113(6):1262-1275.
[76]Lee J E,Frankenberg C,van der Tol C,et al. Forest productivity and water stress in Amazonia:observations from GOSAT chlorophyll fluorescence[J]. Proceedings of the Royal Society B:Biological Sciences,2013,280:20130171.
[77]Yoshida Y,Joiner J,Tucker C,et al. The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence:insights from modeling and comparisons with parameters derived from satellite reflectances[J]. Remote Sensing of Environment,2015,166:163-177.
[78]Sun Y,Fu R,Dickinson R,et al. Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence:insights from two contrasting extreme events[J]. Journal of Geophysical Research:Biogeosciences,2016,120(11):2427-2440.
[79]Wang S,Huang C,Zhang L,et al. Monitoring and assessing the 2012 drought in the Great Plains:analyzing satellite-retrieved solar-induced chlorophyll fluorescence,drought indices,and gross primary production[J]. Remote Sensing,2016,8(2):61.
[80]Chen X J,Mo X G,Zhang Y C,et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators,2019,104:347-356.
[81]Wang X R,Qiu B,Li W K,et al. Impacts of drought and heatwave on the terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll fluorescence[J]. Science of the Total Environment,2019,693:133627.
[82]Zhang L F,Qiao N,Huang C P,et al. Monitoring drought effects on vegetation productivity using satellite solar-induced chlorophyll fluorescence[J]. Remote Sensing,2019,11(4):378.
[83]石涛,杨太明,黄勇,等. 无人机多光谱遥感监测水稻高温胁迫的关键技术[J]. 中国农业气象,2020,41(9):597-604.
[84]陈朝晖,朱江,徐兴奎. 利用归一化植被指数研究植被分类、面积估算和不确定性分析的进展[J]. 气候与环境研究,2004,9(4):687-696.
[85]谢晓金,李映雪,李秉柏,等. 高温胁迫下水稻产量的高光谱估测研究[J]. 中国水稻科学,2010,24(2):196-202.
[86]谢晓金,申双和,李映雪,等. 高温胁迫下水稻红边特征及SPAD和LAI的监测[J]. 农业工程学报,2010,26(3):183-190.
[87]吴朝阳,牛铮. 植物光化学植被指数对叶片生化组分参数的敏感性[J]. 中国科学院研究生院学报,2008,25(3):346-354.
[88]彭涛,姚广,高辉远,等. 植物叶片和冠层光化学反射指数与叶黄素循环的关系[J]. 生态学报,2009,29(4):1987-1993.
[89]Song L,Guanter L,Guan K,et al. Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains[J]. Global Change Biology,2018,24(9):4023-4037.
[90]Agati G. Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength[J]. Pure and Applied Optics,1999,7(4):797.
[91]Pinto F,Celesti M,Acebron K,et al. Dynamics of sun-induced chlorophyll fluorescence and reflectance to detect stress-induced variations in canopy photosynthesis[J]. Plant,Cell & Environment,2020,43(7):1637-1654.
[92]瞿瑛,刘素红,李小文. 重金属Cu胁迫下典型农作物叶片日光诱导荧光辐射特征提取研究[J]. 光谱学与光谱分析,2012,32(5):1282-1286.
[93]朱冰雪,陈圣波,周超,等. Cu胁迫下油菜叶片日光诱导荧光辐射特征[J]. 科学技术与工程,2018,18(10):1-5.
[94]赵 叶,竞霞,黄文江,等. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析[J]. 光谱学与光谱分析,2019,39(9):2739-2745.
[95]陈思媛,竞霞,董莹莹,等. 基于日光诱导叶绿素荧光与反射率光谱的小麦条锈病探测研究[J]. 遥感技术与应用,2019,34(3):511-520.
[96]竞霞,白宗璠,张腾,等. 3FLD和反射率荧光指数估测小麦条锈病病情严重度的对比分析[J]. 中国农机化学报,2019,40(11):136-142.
[97]竞霞,吕小艳,张超,等. 基于SIF-PLS模型的冬小麦条锈病早期光谱探测[J]. 农业机械学报,2020,51(6):191-197.

相似文献/References:

[1]景卓鑫,张远,王珂靖,等.基于Radarsat-2雷达数据的水稻参数反演[J].江苏农业科学,2013,41(11):61.
 Jing Zhuoxin,et al.Rice parameters inversion based on Radarsat-2 data[J].Jiangsu Agricultural Sciences,2013,41(24):61.
[2]郑磊,王耀强,郭晓静,等.四极化Radarsat-2数据对裸露地表土壤水分的反演[J].江苏农业科学,2014,42(05):250.
 Zheng Lei,et al.Soil moisture inversion by four polarization Radarsat-2 data[J].Jiangsu Agricultural Sciences,2014,42(24):250.
[3]弓永利.基于微波遥感的裸露地表土壤盐分含量的反演[J].江苏农业科学,2015,43(11):442.
 Gong Yongli.Inversion of bare surface soil salinity based on microwave remote sensing[J].Jiangsu Agricultural Sciences,2015,43(24):442.
[4]王有宁,覃燕,刘牛,等.HJ-1星CCD数据多次分类反演夏收作物油菜与小麦的空间分布[J].江苏农业科学,2017,45(04):163.
 Wang Youning,et al.Spatial distribution of summer harvesting crops rape and wheat based on multiple classification inversion of HJ-1 CCD data[J].Jiangsu Agricultural Sciences,2017,45(24):163.
[5]刘远,周买春.遥感反演植被叶面积指数的不确定性来源综述[J].江苏农业科学,2017,45(12):12.
 Liu Yuan,et al.Uncertain sources of remote sensing inversion of vegetation leaf area index:an overview[J].Jiangsu Agricultural Sciences,2017,45(24):12.
[6]翟丽婷,魏峰远,冯海宽,等.基于综合指标的冬小麦长势监测[J].江苏农业科学,2020,48(18):244.
 Zhai Liting,et al.Winter wheat growth monitoring based on comprehensive indicators[J].Jiangsu Agricultural Sciences,2020,48(24):244.
[7]卜小东,郭辉,黄可京.热红外遥感在农田环境水分监测中的应用进展[J].江苏农业科学,2020,48(20):25.
 Bu Xiaodong,et al.Performance and application of thermal infrared remote sensing in farmland environmental water monitoring[J].Jiangsu Agricultural Sciences,2020,48(24):25.
[8]谢鹏飞,倪锋,褚荣浩,等.高温干旱复合胁迫下夏玉米冠层日光诱导叶绿素荧光与光合参数的关联机制[J].江苏农业科学,2022,50(16):65.
 Xie Pengfei,et al.Correlation mechanism between canopy solar-induced chlorophyll fluorescence and photosynthetic parameters of summer maize under compound stress of heat and drought[J].Jiangsu Agricultural Sciences,2022,50(24):65.
[9]杜龙龙,王荣扬,陆学斌,等.面向灌木型白茶叶面积密度的双源点云激光协同反演方法[J].江苏农业科学,2022,50(24):160.
 Du Longlong,et al.A dual-source point cloud laser collaborative inversion method for shrubby white tea area density[J].Jiangsu Agricultural Sciences,2022,50(24):160.

备注/Memo

备注/Memo:
收稿日期:2021-04-22
基金项目:国家自然科学基金(编号:41905100);安徽省自然科学基金(编号:2108085QD157、1908085QD171);国家重点研发计划(编号:2018YFD0300905);安徽农业大学引进与稳定人才资助项目(编号:yj2018-57);安徽农业大学青年基金重点项目(编号:2018zd07)。
作者简介:彭金龙(1996—),男,安徽宿州人,硕士研究生,主要从事农业气象研究。E-mail:jinlongpeng@ahau.edu.cn。
通信作者:李萌,博士,讲师,主要从事农业气象研究。E-mail:mengli@ahau.edu.cn。
更新日期/Last Update: 2021-12-20