|本期目录/Table of Contents|

[1]杨青青,赵永强,刘灿玉,等.大蒜AsPEX7基因的克隆与非生物胁迫响应分析[J].江苏农业科学,2022,50(6):24-31.
 Yang Qingqing,et al.Cloning of AsPEX7 gene and its response to abiotic stress in garlic[J].Jiangsu Agricultural Sciences,2022,50(6):24-31.
点击复制

大蒜AsPEX7基因的克隆与非生物胁迫响应分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第6期
页码:
24-31
栏目:
生物技术
出版日期:
2022-03-20

文章信息/Info

Title:
Cloning of AsPEX7 gene and its response to abiotic stress in garlic
作者:
杨青青 赵永强 刘灿玉 葛洁 陆信娟 张碧薇 杨峰 樊继德
江苏徐淮地区徐州农业科学研究所,江苏徐州 221121
Author(s):
Yang Qingqinget al
关键词:
大蒜AsPEX7基因基因克隆非生物胁迫表达分析
Keywords:
-
分类号:
S633.401
DOI:
-
文献标志码:
A
摘要:
为了解大蒜PEX7基因及其编码的蛋白质结构特性,分析该基因对不同非生物胁迫的响应情况,从大蒜品种徐紫1号的叶片RNA中克隆获得AsPEX7基因。序列分析结果表明,AsPEX7基因含有1个长度为951 bp的开放阅读框(ORF),编码316个氨基酸,其相对分子质量为35.57 ku,理论等电点为5.55,为亲水性蛋白。氨基酸组成中脂肪族氨基酸的比例最高,其次为碱性氨基酸,酸性氨基酸和芳香族氨基酸最低。AsPEX7蛋白含有25个磷酸化位点,无信号肽和跨膜结构,二级结构由α-螺旋、延伸主链和随机卷曲组成,比例分别为5.06%、40.19%和4715%。实时荧光定量PCR(RT-qPCR)结果显示,在高温(38 ℃)、低温(4 ℃)、干旱(质量体积分数为20%的PEG 6000)和高盐(200 mmol/L NaCl)4种非生物胁迫处理条件下,AsPEX7基因的相对表达水平总体升高,表明该基因可能在抵抗非生物胁迫中发挥重要作用。本研究结果为深入解析PEX7基因调控大蒜生长发育及非生物胁迫的分子机制提供了理论参考基础。
Abstract:
-

参考文献/References:

[1]梅四卫,朱涵珍. 大蒜研究进展[J]. 中国农学通报,2009,25(8):154-158.
[2]杨献光,梁卫红,齐志广,等. 植物非生物胁迫应答的分子机制[J]. 麦类作物学报,2006,26(6):158-161.
[3]齐琪,马书荣,徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种,2020,18(8):2741-2746.
[4]高飞雁,李玲,王教瑜,等. PEX基因在过氧化物酶体形成及真菌致病性中的作用[J]. 遗传,2017,39(10):908-917.
[5]An C J,Gao Y F,Li J Y,et al. Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis[J]. Plant Cell Reports,2017,36(7):1027-1036.
[6]孙艳,孙雪培,姜玲玲,等. 过氧化物酶体生物发生研究进展[J]. 生物学杂志,2015,32(2):83-86.
[7]Hu J P,Aguirre M,Peto C,et al. A role for peroxisomes in photomorphogenesis and development of Arabidopsis[J]. Science,2002,297(5580):405-409.
[8]Islinger M,Voelkl A,Fahimi H D,et al. The peroxisome:an update on mysteries 2.0[J]. Histochemistry and Cell Biology,2018,150(5):443-471.
[9]Koch J,Pranjic K,Huber A,et al. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance[J]. Journal of Cell Science,2010,123(Pt 19):3389-3400.
[10]田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究,2001,19(4):332-344.
[11]Cui S K,Fukao Y,Mano S,et al. Proteomic analysis reveals that the rab GTPase RabE1c is involved in the degradation of the peroxisomal protein receptor PEX7 (peroxin 7)[J]. Journal of Biological Chemistry,2013,288(8):6014-6023.
[12]Platta H W,Erdmann R. Peroxisomal dynamics[J]. Trends in Cell Biology,2007,17(10):474-484.
[13]Platta H W,Hagen S,Erdmann R.The exportomer:the peroxisomal receptor export machinery[J]. Cellular and Molecular Life Sciences:CMLS,2013,70(8):1393-1411.
[14]Rodrigues T A,Alencastre I S,Francisco T,et al. A PEX7-centered perspective on the peroxisomal targeting signal type 2-mediated protein import pathway[J]. Molecular and Cellular Biology,2014,34(15):2917-2928.
[15]Francisco T,Rodrigues T A,Freitas M O,et al. A cargo-centered perspective on the PEX5 receptor-mediated peroxisomal protein import pathway[J]. Journal of Biological Chemistry,2013,288(40):29151-29159.
[16]Kiel J A K W,van der Klei I J.Proteins involved in microbody biogenesis and degradation in Aspergillus nidulans[J]. Fungal Genetics and Biology,2009,46(1):S62-S71.
[17]Singh T,Hayashi M,Mano S,et al. Molecular components required for the targeting of PEX7 to peroxisomes in Arabidopsis thaliana[J]. Plant Journal,2009,60(3):488-498.
[18]赵亚虹. 蜡梅过氧化物酶体生成蛋白基因CpPEX22的克隆及功能初步分析[D]. 重庆:西南大学,2013.
[19]何好,朱国庆,陈诗雅,等. 细叶百合LpPEX7基因克隆及盐胁迫下的表达特性分析[J]. 植物研究,2020,40(2):274-283.
[20]姚琨,练从龙,王菁菁,等. 胡杨PePEX11基因参与调节盐胁迫下拟南芥的抗氧化能力[J]. 北京林业大学学报,2018,40(5):19-28.
[21]詹爽,梁绮雯,罗为桂,等. PEX5参与调控拟南芥根系抗逆性的初步研究[J]. 激光生物学报,2019,28(4):336-342.
[22]Tamura K,Peterson D,Peterson N,et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Molecular Biology and Evolution,2011,28(10):2731-2739.
[23]Ikeda M,Arai M,Lao D M,et al. Transmembrane topology prediction methods:a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies[J]. In Silico Biology,2002,2(1):19-33.
[24] Dyrlv Bendtsen J,Nielsen H,von Heijne G,et al. Improved prediction of signal peptides:SignalP 3.0[J]. Journal of Molecular Biology,2004,340(4):783-795.
[25]江海燕,杜菊花,毛恋,等. 植物响应高温胁迫转录因子研究进展[J]. 分子植物育种,2020,18(10):3251-3258.
[26]Gao Y,Jiang W,Dai Y,et al. A maize phytochrome-interacting factor 3 improves drought and salt stress tolerance in rice[J]. Plant Molecular Biology,2015,87(4/5):413-428.
[27]徐海,宋波,顾宗福,等. 植物耐热机理研究进展[J]. 江苏农业学报,2020,36(1):243-250.
[28]李丽,刘双清,杨远航,等. 热激转录因子在植物抗非生物胁迫中的功能研究进展[J]. 生物技术进展,2018,8(3):214-220.
[29]宋有金,吴超. 高温影响水稻颖花育性的生理机制综述[J]. 江苏农业科学,2020,48(16):41-48.
[30]Parihar P,Singh S,Singh R,et al. Effect of salinity stress on plants and its tolerance strategies:a review[J]. Environmental Science and Pollution Research International,2015,22(6):4056-4075.
[31]侯进慧,刘春雷. 我国大蒜资源深加工与产业化研究进展[J]. 生物资源,2020,42(1):36-42.
[32]严莉,陈建伟,王翠平,等. 基于转录组信息的黑果枸杞WD40蛋白质家族分析[J]. 核农学报,2019,33(3):482-489.
[33]Hu J P. Plant peroxisomes:small organelles with versatility and complexity[J]. Journal of Integrative Plant Biology,2019,61(7):782-783.
[34]Mittler R,Vanderauwera S,Gollery M,et al. Reactive oxygen gene network of plants[J]. Trends in Plant Science,2004,9(10):490-498.
[35]Kunze M,Malkani N,Maurer-Stroh S,et al. Mechanistic insights into PTS2-mediated peroxisomal protein import[J]. Journal of Biological Chemistry,2015,290(8):4928-4940.

相似文献/References:

[1]沈默,赵邦良,穆加会.基于产业链视角的中国蒜业发展对策[J].江苏农业科学,2013,41(04):5.
[2]曹鹏飞.3种植物提取物对樱桃番茄青枯病病原菌的抑菌活性[J].江苏农业科学,2014,42(11):169.
 Cao Pengfei(9).Antibacterial activity of three kinds of plant extracts on cherry tomato bacterial wilt pathogens[J].Jiangsu Agricultural Sciences,2014,42(6):169.
[3]姜自红.硫硒互作对青蒜苗期生长及抗氧化能力的影响[J].江苏农业科学,2016,44(05):217.
 Jiang Zihong.Effects of sulfur and selenium interactions on seedling growth and antioxidant activity of garlic[J].Jiangsu Agricultural Sciences,2016,44(6):217.
[4]朱利君,闫秋洁.外源氯化钙对大蒜幼苗盐胁迫伤害的缓解作用[J].江苏农业科学,2016,44(08):242.
 Zhu Lijun,et al.Mitigative effect of exogenous CaCl2 on salt stress damage of Allium sativum L. seedlings[J].Jiangsu Agricultural Sciences,2016,44(6):242.
[5]刘素慧,尉辉,徐金强,等.EM菌对连作大蒜形态和生理生化指标的影响[J].江苏农业科学,2016,44(02):192.
 Liu Suhui,et al.Effects of effective microorganisms on morphological and physiological characteristics of continuous cropping garlic (Allium sativum L.)[J].Jiangsu Agricultural Sciences,2016,44(6):192.
[6]魏玉珍,邹栋林,刘勇兰,等.大蒜种植机中直立筛选装置的研制[J].江苏农业科学,2017,45(17):219.
 Wei Yuzheng,et al.Development of vertical screening device in garlic planting machine[J].Jiangsu Agricultural Sciences,2017,45(6):219.
[7]尹娟,李文杨.钾肥对保护地大蒜品质及干鲜质量的影响[J].江苏农业科学,2017,45(19):211.
 Yin Juan,et al.Effects of potassium on nutrient quality and dry fresh weight of garlic in protected area[J].Jiangsu Agricultural Sciences,2017,45(6):211.
[8]李乐溪,李丹,张亮,等.大蒜内生菌的分离及拮抗菌株的筛选与鉴定[J].江苏农业科学,2018,46(05):97.
 Li Lexi,et al.Isolation and identification of garlic endophytes and screening of their antagonistic strains[J].Jiangsu Agricultural Sciences,2018,46(6):97.
[9]刘素慧,徐金强,束瑞,等.不同套蒜期对番茄根际土壤酶活性的影响[J].江苏农业科学,2018,46(18):104.
 Liu Suhui,et al.Impacts of different intercropping times of garlic on soil enzyme activities in rhizosphere of tomato[J].Jiangsu Agricultural Sciences,2018,46(6):104.
[10]冯翠,衣政伟,杜静,等.大蒜种质资源农艺性状综合评价与适应性鉴定[J].江苏农业科学,2019,47(06):119.
 Feng Cui,et al.Adaptive identification and agronomic evaluation of garlic germplasm resources[J].Jiangsu Agricultural Sciences,2019,47(6):119.

备注/Memo

备注/Memo:
收稿日期:2021-06-16
基金项目:江苏省农业科学院探索性颠覆性创新计划[编号:XZ(21)1229];国家特色蔬菜产业技术体系项目(编号:CARS-24-A-07);江苏现代农业产业技术体系建设专项(编号:JATS[2020]043)。
作者简介:杨青青(1994—),女,河南洛阳人,硕士,研究实习员,主要从事大蒜分子生物学研究。E-mail:2521918664@qq.com。
通信作者:樊继德,硕士,副研究员,主要从事大蒜育种与栽培研究。E-mail:fanjide@163.com。
更新日期/Last Update: 2022-03-20