|本期目录/Table of Contents|

[1]肖晓梅,丁玲.菌根真菌对干旱胁迫下建兰生理生化、根系脂肪酸组成及水分利用的影响[J].江苏农业科学,2023,51(2):160-168.
 Xiao Xiaomei,et al.Influences of mycorrhizal fungi on physiology and biochemistry, root fatty acid composition and water use of Cymbidium ensifoliumunder drought stress[J].Jiangsu Agricultural Sciences,2023,51(2):160-168.
点击复制

菌根真菌对干旱胁迫下建兰生理生化、根系脂肪酸组成及水分利用的影响(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第2期
页码:
160-168
栏目:
园艺与林学
出版日期:
2023-01-20

文章信息/Info

Title:
Influences of mycorrhizal fungi on physiology and biochemistry, root fatty acid composition and water use of Cymbidium ensifoliumunder drought stress
作者:
肖晓梅丁玲
福建农业职业技术学院园艺园林学院,福建福州 350000
Author(s):
Xiao Xiaomeiet al
关键词:
菌根真菌建兰干旱胁迫脂肪酸基因表达水平
Keywords:
-
分类号:
S682.310.1;S182
DOI:
-
文献标志码:
A
摘要:
菌根真菌具有增加宿主植物耐旱性的能力,但关于菌根真菌对宿主脂肪酸(FAs)组成的潜在调控机制仍知之甚少。采用盆栽试验,设置充足水分(WW)和干旱处理(DS),研究接种角担菌(CE)、胶膜菌(TU)和蜡壳菌(SE)对干旱胁迫下建兰(Cymbidium ensifolium)抗氧化系统、水分利用及脂肪酸组成的影响;探讨菌根真菌缓解兰花干旱胁迫的生理机制,为兰花栽培提供理论依据。结果表明,3株菌根真菌均能与建兰构建共生关系,但在干旱胁迫下菌根真菌存活率均显著降低。在WW和DS条件下,接种菌根真菌均显著提高了根系不饱和脂肪酸(C14:1、C17:1、C18:2、C20:3n3、C20:4n6、C22:2)含量,显著降低了饱和脂肪酸(C18:0、C20:0、C24:0)含量,使得FAs不饱和比例增加。DS条件下,菌根真菌提高了抗氧化酶(SOD、CAT、POD)活性、H2O2含量及水分利用参数(WUE、RWC),降低了丙二醛(MDA)及超氧阴离子自由基(O-2·)含量,并上调了相关FAs去饱和酶基因(CyFAD2、CyFAD6、CyFAC9、CyFAZ15)的表达。综上,干旱胁迫下,菌根真菌通过调节FAs去饱和基因的表达从而影响相应脂肪酸含量,导致根系脂肪酸的不饱和指数增加,并调节丙二醛和超氧阴离子自由基含量,最终降低氧化损伤;整体来看,干旱胁迫下以接种胶膜菌(Tulasnella sp.)效果最佳。
Abstract:
-

参考文献/References:

[1]Zhang F,Zou Y N,Wu Q S,et al. Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange[J]. Environmental and Experimental Botany,2020,171:103926.
[2]杨利,王波,李文姣,等. 干旱胁迫下ROS的产生、清除及信号转导研究进展[J]. 生物技术通报,2021,37(4):194-203.
[3]李海霞. 六个牡丹品种对干旱胁迫的生理响应机制及抗性评价[J]. 北方园艺,2021(4):64-71.
[4]杨芳,乔岩,金中辉,等. 高温胁迫对马铃薯幼苗活性氧代谢及生理特性的影响[J]. 江苏农业科学,2022,50(11):97-103.
[5]杨舒贻,陈晓阳,惠文凯,等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版),2016,45(5):481-489.
[6]Baoukina S,Rozmanov D,Tieleman D P. Composition fluctuations in lipid bilayers[J]. Biophysical Journal,2017,113(12):2750-2761.
[7]Mikami K,Murata N. Membrane fluidity and the perception of environmental signals in cyanobacteria and plants[J]. Progress in Lipid Research,2003,42(6):527-543.
[8]Su K M,Moss J Q,Zhang G L,et al. Membrane lipid composition and drought tolerance in bermudagrass[J]. International Turfgrass Society research journal,2013,12:445-452.
[9]Zhong D H,Du H M,Wang Z L,et al. Genotypic variation in fatty acid composition and unsaturation levels in bermudagrass associated with leaf dehydration tolerance[J]. Journal of the American Society for Horticultural Science,2011,136(1):35-40.
[10]Toumi I,Gargouri M,Nouairi I,et al. Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance[J]. Biologia Plantarum,2008,52(1):161-164.
[11]杨前宇,何聪芬,梁立雄,等. 菌根真菌对3种兰花幼苗生长作用研究[J]. 核农学报,2019,33(4):687-695.
[12]Zhao X L,Yang J Z,Liu S,et al. The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets[J]. World Journal of Microbiology and Biotechnology,2014,30(7):1993-2003.
[13]陈宝玲,杨开太,黄森,等. 有益菌根真菌及其互作对带叶兜兰试管苗生理生长的影响[J]. 西南林业大学学报(自然科学),2022,42(2):19-25.
[14]高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社,2006.
[15]郑燕,刘舒雅,曹映辉,等. 建兰大青花朵脂肪酸类物质萃取条件优化及成分分析[J]. 甘肃农业大学学报,2021,56(6):127-132,141.
[16]曹映辉,郑燕,张燕萍,等. 建兰花香物质合成相关基因qRT-PCR内参基因筛选[J/OL]. 分子植物育种:1-11[2022-07-28]. http://kns.cnki.net/kcms/detail/46.1068.S.20210510.
[17]陈艳红,邢晓科,郭顺星. 兰科植物与菌根真菌的营养关系[J]. 菌物学报,2017,36(7):807-819.
[18]王利民,符真珠,高杰,等. 植物不饱和脂肪酸的生物合成及调控[J]. 基因组学与应用生物学,2020,39(1):254-258.
[19]Zhang M,Barg R,Yin M G,et al. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J]. The Plant Journal,2005,44(3):361-371.
[20]Wu Q S,He J D,Srivastava A K,et al. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels[J]. Tree Physiology,2019,39(7):1149-1158.
[21]曹福亮,王欢利,郁万文,等. 高等植物脂肪酸去饱和酶及编码基因研究进展[J]. 南京林业大学学报(自然科学版),2012,36(2):125-132.
[22]闵文莉,曹喜涛,季更生,等. 调控脂肪酸合成植物转录因子的研究进展[J]. 发酵科技通讯,2017,46(2):107-112.
[23]祁伟亮,孙万仓,马骊. 活性氧参与调控植物生长发育和胁迫应激响应机理的研究进展[J]. 干旱地区农业研究,2021,39(3):69-81,193.
[24]Halliwell B. Reactive species and antioxidants.Redox biology is a fundamental theme of aerobic life[J]. Plant Physiology,2006,141(2):312-322.
[25]Huang Y M,Zou Y N,Wu Q S. Alleviation of drought stress by mycorrhizas is related to increased root H2O2 efflux in trifoliate orange[J]. Scientific Reports,2017,7:42335.
[26]林兵,武胜利,葛欢欢,等. 灌溉量对不同林龄胡杨光合特性和水分利用效率的影响[J]. 江苏农业科学,2021,49(3):125-132.
[27]刘娜,赵泽宇,姜喜铃,等. 菌根真菌提高植物抗旱性机制的研究回顾与展望[J]. 菌物学报,2021,40(4):851-872.

相似文献/References:

[1]徐超,席刚俊,范克胜,等.不同氮源对铁皮石斛菌根真菌生长的影响[J].江苏农业科学,2013,41(04):236.
[2]徐超,张红岩,杨鹤同,等.铁皮石斛优良菌根真菌的筛选[J].江苏农业科学,2017,45(24):108.
 Xu Chao,et al.Screening of good mycorrhizal fungi from Dendrobium officinale Kimura et Migo[J].Jiangsu Agricultural Sciences,2017,45(2):108.
[3]刘芳洁.菌根真菌提高紫苏根腐病抗性的机制研究[J].江苏农业科学,2018,46(11):78.
 Liu Fangjie.Study on mechanism of mycorrhizal fungi increasing purple perilla root rot resistance[J].Jiangsu Agricultural Sciences,2018,46(2):78.
[4]王宏信,冷凝,剧春晖,等.菌根真菌与根瘤菌联合作用对降香黄檀幼苗根系构型及养分吸收的影响[J].江苏农业科学,2018,46(13):120.
 Wang Hongxin,et al.Effects of arbuscular mycorrhizal fungi combined with rhizobium on root architecture and nutrition uptake of Dalbergia odorifera T. Chen seedlings[J].Jiangsu Agricultural Sciences,2018,46(2):120.
[5]田凡,廖小锋,颜凤霞,等.硬叶兜兰菌根结构及菌根真菌空间分布特征[J].江苏农业科学,2019,47(02):105.
 Tian Fan,et al.Study on mycorrhizal structure and spatial distribution characteristic of mycorrhizal fungi in roots of Paphiopedilum micranthum[J].Jiangsu Agricultural Sciences,2019,47(2):105.
[6]邓文楷,彭艳,杨成,等.建兰MYB基因家族鉴定及在盐胁迫下的表达分析[J].江苏农业科学,2023,51(21):19.
 Deng Wenkai,et al.Identification of MYB gene family in Cymbidium ensifolium and its expression analysis under salt stress[J].Jiangsu Agricultural Sciences,2023,51(2):19.

备注/Memo

备注/Memo:
收稿日期:2022-07-29
基金项目:福建省教育厅中青年课题项目(编号:JZ180532)。
作者简介:肖晓梅(1976—),女,福建大田人,硕士,副教授,主要从事园林植物研究。E-mail:18960857650@qq.com。
更新日期/Last Update: 2023-01-20