张 凤, 黄 芳, 薤白多糖除蛋白工艺条件优化研究[J], 江苏农业科学,2013,41(12)·285-287,

薤白多糖除蛋白工艺条件优化研究

张 凤,黄 芳

(南京晓庄学院生物化工与环境工程学院,江苏南京 211171)

摘要:采用胰蛋白酶脱除薤白多糖中蛋白质,应用响应面分析法对工艺条件进行优化。以蛋白脱除率为考察指标,选用超声时间、水浴温度、酶液 pH 值、酶液用量 4 个因素,通过 Box - Behnken 试验设计对工艺条件进行优化。结果表明,薤白多糖最佳脱蛋白工艺条件为:超声时间 45 min、水浴温度 38 ℃、酶液 pH 值 8.0、10 mL 体系酶液用量 0.80 mL,在此条件下蛋白脱除率为 88.25%,与模型的预测值 88.85% 基本一致。

关键词:胰蛋白酶;响应面;脱蛋白;薤白;多糖;工艺优化

中图分类号:TS201.1 文献标志码:A 文章编号:1002-1302(2013)12-0285-03

薤白(Allium macrostemon Bunge),别名野蒜、小蒜、小根蒜、苦蒜等,是百合科葱属多年生草本植物,其鳞茎上屉蒸至半熟后晒干或烘干人药称作薤白[1-3]。据《本草纲目》记载,薤白具有瘀血可散、胸痹刺痛可愈、中恶猝死可救等作用[4]。薤白多糖是薤白的主要活性成分之一,具有抗菌、抗氧化等功能。关于薤白中多糖的提取已有报道[5]。多糖提取方法较多,但在提取过程中,常伴随有一定的蛋白质会吸附多糖,影响后续试验中多糖的分离纯化[6-7],因此选择蛋白去除率高且多糖损失率小的除蛋白方法是关键环节。研究表明,酶法脱蛋白是一种脱蛋白效率高、操作简单、多糖损失小的有效脱蛋白方法[8]。本研究采用胰蛋白酶对薤白多糖中蛋白质进行去除,通过响应面试验设计优化了酶法脱除薤白多糖中蛋白质的工艺条件,这也可为其他多糖除蛋白工艺研究提供一定的参考。

1 材料与方法

1.1 材料与仪器

薤白购自中药材市场。无水葡萄糖、苯酚、浓硫酸均为分析纯。胰蛋白酶(活力单位≥50 000 U/g)、考马斯亮蓝G-250、牛血清白蛋白标准品等生化试剂,购于中国医药集团上海化学试剂公司。

主要仪器包括:AUY120 电子天平(日本岛津);7230G 可见分光光度计(上海精密仪器有限公司);HH-6 水浴锅(金坛市精达仪器制造厂);KQ200KDB 高功率数控超声清洗器(昆山市超声仪器有限公司);RE-52A 旋转蒸发仪(上海雅荣生化仪器设备有限公司);DZF6021 真空干燥箱(上海精宏实验设备有限公司);CT14D 型高速离心机(上海天美生化仪器设备工程有限公司)。

1.2 试验方法

1.2.1 薤白粗多糖的制备 薤白洗净烘干至恒重→粉碎过

40 目筛→精密称取粉末→加适量蒸馏水超声辅助提取→离心→过滤→滤液减压浓缩→乙醇沉淀(乙醇浓度 80%)→真空干燥→薤白粗多糖→精密称取 0.1 g→50 mL 容量瓶定容→多糖溶液,备用。

1.2.2 胰蛋白酶脱除薤白多糖蛋白质的工艺 移取薤白多糖溶液 5 mL,置于锥形瓶中,与 pH 值 8.0、浓度为 500 U/mL 的胰蛋白酶酶液分别同时放入 37 ℃的水浴锅内预热 10 min。向多糖溶液加入 0.80 mL 酶液,定容至 10 mL 后置于 38 ℃水浴中超声 45 min 脱除蛋白。之后,将溶液放入 100 ℃水浴锅中灭酶 10 min,冷却至室温,14 000 r/min 高速离心 10 min,收集上清液,测定蛋白含量。

1.2.3 蛋白质含量的测定 采用考马斯亮蓝法^[9]:以牛血清蛋白为标准品,在 595 nm 条件下测定吸光度,得回归方程 $y = 0.029 \ 3x + 0.006 \ 2(n = 5, \text{其中 } x \ \text{为蛋白含量}, \mu \text{g/mL}; y \ \text{为 吸光度}), r^2 \ \text{为 0.997 3}$ 。

蛋白质去除率 = (处理前蛋白含量 - 处理后蛋白含量)/处理前蛋白含量×100%。

1.2.4 响应面试验设计 根据单因素试验结果,选择超声时间、水浴温度、溶液 pH 值、酶液用量等 4 个主要因素,分别选择 3 个水平(表 1),以蛋白脱除率(Y)为考察指标,进行响应面试验设计[10-11],优化胰蛋白酶脱除薤白多糖中蛋白的工艺条件。

-						
	编码	A:超声时间 (min)	B:水浴温度 (℃)	C:溶液 pH 值	D:酶液用量 (mL)	
	1	35	30	7.5	0.40	
	0	45	37	8.0	0.80	
	- 1	55	44	8.5	1.20	

收稿日期:2013-04-28

2 结果与分析

2.1 响应面工艺回归模型的建立及方差分析

在单因素试验基础上,依据 BBD 中心组合试验设计进行了 29 组试验,其中 5 组中心点重复试验,试验结果见表 2,回归模型的方差分析见表 3。

基金项目:南京晓庄学院科研项目(编号:2012NXY18);江苏省高校自然科学研究项目。

作者简介:张 凤(1964—),女,四川会理人,实验师,从事化学实验的教学与研究工作。E-mail:zhmr007@163.com。

表 2	薤白多糖除蛋白工艺响应曲面试验设计及结果							
试验号	A B		С	D	蛋白脱除率(%)			
1	1	0	0	1	79.96			
2	1	0	- 1	0	80.28			
3	0	0	1	1	80.43			
4	0	0	0	0	88.84			
5	0	1	0	1	78.67			
6	- 1	0	- 1	0	78.69			
7	1	0	1	0	82.09			
8	1	1	0	0	82.48			
9	0	0	- 1	1	76.73			
10	0	0	1	- 1	78.24			
11	0	0	0	0	88.77			
12	0	1	0	- 1	76.71			
13	0	- 1	-1	0	76.00			
14	0	0	0	0	88.72			
15	- 1	0	0	- 1	80.07			
16	- 1	1	0	0	80.31			
17	0	0	0	0	88.36			
18	0	- 1	0	1	72.79			
19	0	- 1	0	- 1	76.64			
20	1	– 1	0	0	77.17			
21	0	0	- 1	- 1	77.35			
22	0	0	0	0	88.15			
23	0	- 1	1	0	76.37			
24	1	0	0	- 1	80.46			
25	- 1	0	0	1	80.15			
26	- 1	0	1	0	83.47			
27	0	1	- 1	0	76.32			
28	0	1	1	0	82.54			
29	- 1	-1	0	0	77.14			

	表 3 蛋白脱除率回归模型的方差分析					
方差来源	平方和	自由度	均方	F 值	P 值	显著性
]模型	543.13	14	38.80	119.93	< 0.000 1	**
A	0.57	1	0.57	1.75	0.206 5	
В	36.47	1	36.47	112.74	< 0.000 1	**
C	26.31	1	26.31	81.34	< 0.000 1	**
D	0.046	1	0.046	0.14	0.7129	
AB	1.14	1	1.14	3.54	0.0809	
AC	2.21	1	2.21	6.82	0.020 5	*
AD	0.084	1	0.084	0.26	0.618 1	
BC	8.56	1	8.56	26.45	0.0001	**
BD	8.44	1	8.44	26.09	0.0002	**
CD	1.97	1	1.97	6.10	0.027 0	
\mathbf{A}^2	50.65	1	50.65	156.58	< 0.000 1	**
\mathbf{B}^2	268.66	1	268.66	830.49	< 0.000 1	**
C^2	132.19	1	132.19	408.65	< 0.000 1	**
D^2	218.44	1	218.44	675.27	< 0.000 1	**
残差	4.53	14	0.32			
失拟	4.17	10	0.42	4.69	0.0749	
纯误差	0.36	4	0.089			
总和	547.66	28				
r^2	0. 991	7				
$r_{ m Adj}^2$	0.983	5				

注:*差异显著(P<0.05);**差异极显著(P<0.01)。

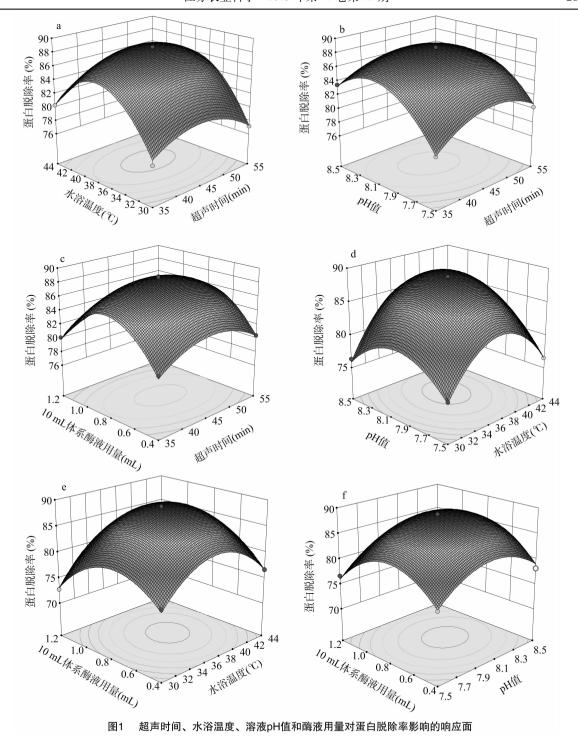
利用软件 Design Expert 8.0 对数据进行多元回归拟合. 得到蛋白脱除率与试验条件之间的二次多项式方程为: Y= 88.57 + 0.22A + 1.74B + 1.48C - 0.062D + 0.54AB - 0.74AC - $0.15AD + 1.46BC + 1.45BD + 0.70CD - 2.79A^2 - 6.44B^2$ $4.51C^2 - 5.80D^2$

式中:Y为蛋白脱除率的预测值: $A \setminus B \setminus C \setminus D$ 分别代表超声时 间、水浴温度、溶液 pH、酶液用量的编码值。 方差分析结果显 示,方程复相关系数的平方 R^2 为0.9917,说明该模型极显著 (P < 0.01),失拟项(r > 0.01)不显著及 r_{AB}^2 为 0.983 5,说明 建立的模型能够解释 98.35% 响应值的变化,用该模型对胰 蛋白酶脱除薤白多糖中蛋白质的工艺条件进行优化是可 行的。

2.2 交互效应

根据回归方程,作响应曲面图,考察所拟合的响应曲面的 形状,分析各影响因素对提取率的影响以及各因素间的交互 效应,其响应曲面如图1所示,6组图直观地反映了各因素对 响应值的影响。从图1中可以看出,当4个因素中任意2个 因素取零水平,其余2个因素同时变化时,随着两者的增大, 多糖提取率均呈现先上升后下降的趋势。比较6组图并结合 表 3 方差分析可知: 方程的二次项的影响均极显著, 交互项影 响、各一次项显著性参差不齐,表明各因素对蛋白脱除率的影 响较复杂,不是简单的线性关系,可以利用回归方程来确定最 佳工艺条件。

2.3 验证试验


由模型方程通过软件计算得到脱除薤白多糖中蛋白质的 最佳工艺条件为: 超声时间 45.28 min、水浴温度 38.13 ℃、酶 液 pH 信 8.09、酶液用量 0.81 mL(10 mL 体系), 在此条件下 多糖提取率的理论值可达88.85%。根据试验情况将以上工 艺参数修正为超声时间 45 min、水浴温度 38 ℃、酶液 pH 值 8.0、酶液用量 0.80 mL(10 mL 体系),实际测得试验结果蛋 白脱除率为88.25%,说明该模型可以较好地预测各试验条 件与蛋白脱除率之间的关系,具有一定实用价值。

3 结论

本研究根据中心组合试验设计原理,以蛋白脱除率为响 应指标,通过4因素3水平响应分析对胰蛋白酶脱除薤白多 糖中蛋白质的工艺条件进行了优化。优化后得到最佳工艺条 件为超声时间 45 min、水浴温度 38 ℃、酶液 pH 值 8.0、酶液 用量 0.80 mL(10 mL体系),在此条件下,测得蛋白脱除率为 88.25%,与模型的预测值88.85%基本一致。

参考文献:

- [1]纪远中. 薤白研究近况及开发前景[J]. 天津药学,2005,17(1):
- [2]张 卿,高 尔. 薤白的研究进展[J]. 中国中药杂志,2003,28 (2):105-107.
- [3]丁 丰,焦淑萍,方 良. 薤白提取物清除羟自由基及抗 DNA 损 伤作用的实验研究[J]. 中药材,2005,28(7):592-593.
- [4]李时珍. 本草纲目:下册[M]. 北京:北京人民出版社,1982:
- [5]夏新奎,杨海霞,李 纯,等. 薤白粗多糖提取工艺研究[J]. 安 徽农业科学,2006,34(17):4403-4405.

- [6]罗 莹,林勤保,赵国燕. 大枣多糖脱蛋白方法的研究[J]. 食品工业科技,2007,28(8):126-128.
- [7] 张步巧, 黄 芳, 周 宏. 响应曲面优化仙人掌多糖提取工艺 [J]. 江苏农业科学, 2012, 40(11): 292 293, 376.
- [8]黄 芳,梁倩倩,周 宏. 响应面法优化龙须菜多糖提取工艺 [J]. 食品工业科技,2013,34(7);260-264,272.
- [9]王金鹏,陈寒青,邓 力,等. 刺五加多糖提取过程中不同脱蛋白
- 方法的比较研究[J]. 天然产物研究与开发,2009,21(1):155 158,162.
- [10]邓 黎,周同永,皮 立,等. 用响应面法优化人工蛹虫草子实体中虫草素的超声提取工艺[J]. 江苏农业科学,2012,40(5): 225-228.
- [11]朱兴一,陈 秀,谢 捷,等. 基于响应面法的闪式提取香菇多糖工艺优化[J]. 江苏农业科学,2012,40(5):243-245.