明 哲, 立辊型玉米收获机对籽粉损失的影响因素[J], 江苏农业科学,2013,41(12)·398-399,

立辊型玉米收获机对籽粒损失的影响因素

明哲

(吉林农业科技学院,吉林九站 132101)

摘要:以吉林地区常种玉米品种为原料,通过对立式摘穗机构的单因素试验和正交试验,对立辊型玉米收获机机收过程中籽粒损失的影响因素进行研究,确定籽粒损失最低的最佳条件:摘穗辊辊型为圆顶花纹辊、摘穗辊转速1000 r/min、籽粒含水率31.1%、机器前进速度0.56 m/s,此时,籽粒损失率为0.215%。为提高生产率,综合考虑效率与玉米籽粒损失利弊,确定立辊型玉米收获机选用摘穗辊转速为1000 r/min、机械前进速度1.38 m/s 对玉米进行机收。

关键词:自走式玉米收割机;立式摘穗辊;玉米籽粒;损失率

中图分类号: S225.5⁺1 文献标志码: A 文章编号:1002-1302(2013)12-0398-02

我国玉米耕、种、收综合机械化水平达到 42.8%,其中,机耕水平达 60%,机播水平达 59%,机收水平仅为 7.2%,玉米机收成为玉米生产机械化的瓶颈,但也给玉米收获机械拓展带来广阔空间。现有开发机型绝大部分为秸杆粉碎型,整机结构尺寸大,实践证明,这种机型并不适合东北地区小田块玉米收获。因此,开发一种适应东北地区使用、配套动力 20马力柴油机自走式立式摘穗辊玉米收割机,对提升东北地区玉米机收水平,实现吉林省玉米产业可持续健康发展具有十

键部件,摘穗辊辊型、摘穗辊转速对作业质量起着重要的作用^[1-2]。另外,影响玉米摘穗过程中籽粒损失的主要因素还有籽粒含水率、机器前进速度等。

分重要的意义。在玉米收获机中,摘穗辊是玉米收获机的关

对玉米收获机主要工作参数进行正交试验,研究立辊型 玉米收获机工作过程中对籽粒损失的影响,得到最佳生产条 件,确定各工作参数最佳组合,以提升东北地区玉米的机收 水平。

收稿日期:2013-04-15

基金项目:吉林省教育厅"十二五"科学技术研究(编号:吉教科合字 [2012]第296号):吉林省科技发展计划(编号:20120205)。

作者简介:明 哲(1972—),男,吉林吉林人,硕士,副教授,从事农业 机械及装置方面研究。E-mail; jlnkjxgc@126.com。

1 材料与方法

1.1 试验材料

选取具有代表性的玉米品种"四单八号"成熟植株为试材,该品种是吉林地区广泛种植的玉米品种,生长期120 d,穗大茎粗,籽粒成熟时秸秆和茎叶含水率低。

在江苏省吴江市同里镇北联村开展了航空施药田间防治试验。试验对象为水稻品种武云粳23,水稻处于分蘖期,株高30~40 cm,试验田块规格为100 m×15 m,病虫害防治对象为三代纵卷叶螟、稻飞虱,药剂为48% 氟腈·毒死蜱乳油。采用无人直升机农药喷洒装备、常规担架式喷雾机2种方式进行对比试验,分别在水稻分蘖期3、5、10 d 施药。无人直升机农药喷洒装备作业参数为:飞机高度5 m,飞行速度3 m/s,喷幅7.2 m,施药量为900 mL/hm² 药+15 L/hm² 水。担架式喷雾机作业参数:行走速度0.7 m/s,喷幅15 m,施药量为900 mL/hm² 药+450 L/hm² 水。由表1 可知,水稻分蘖期无人机施药对纵卷叶螟、稻飞虱的防治效果均优于常规担架喷雾机,特别是施药10 d 后防治效果尤为显著。

表 1 不同机具水稻病虫害防治效果

±π 目	纵卷叶螟防治效果(%)			稻飞虱防治效果(%)		
机具	3 d	5 d	10 d	3 d	5 d	10 d
担架式喷雾机	59.1	52.9	30.0	82.6	67.8	28.2
无人直升机喷洒装	备86.4	88.2	80.0	97.4	92.8	90.0

4 结论

无人直升机农药喷洒装备适合中、小田块的病虫害防治

或是大田块局部精准施药,操作者无需下田,减轻了劳动强度,降低了施药人员的农药中毒风险,提高了施药作业效率。本研究的无人直升机农药喷洒系统由电动离心喷头、折叠式喷杆、药液箱、施药控制系统、液泵、机架等部分组成。药液箱采用双加液口、对称式流线型结构,减少了空气阻力,增加了飞机稳定性。施药控制系统采用 GPS 自动化导航、智能化控制等技术,实时监控整个施药过程,可以避免漏喷、重喷。水稻分蘖期采用无人直升机农药喷洒装备喷药防治病虫害,其防治效果优于常规担架喷雾机,施药 10 d 后防治效果尤为显著。

参考文献:

- [1] Huang Y, Hoffmann W C, Lan Y, et al. Development of a spray system for an unmanned aerial vehicle platform [J]. Applied Engineering in Agriculture, 2009, 6:809 - 809.
- [2] 龚 艳,傅锡敏. 现代农业中的航空施药技术[J]. 农业装备技术,2008,34(6);26-29.
- [3]周海燕,杨学军,严荷荣,等. 风轮转盘式离心喷头试验[J]. 农业机械学报,2008,39(10);76-79.
- [4]周立新,薛新宇,孙 竹,等. 航空喷雾用电动离心喷头试验研究 [J]. 中国农机化,2011(1):107-111.

1.2 主要仪器和设备

YD-15 型动态电阻应变仪,Y6D-2 型动态电阻应变仪,SC18 型光线记录示波器,SC16 型光纤记录示波器,TEAC-CS391 型磁带记录机,高速摄影机、功率表、转速表及其他辅助工具若干。

试验台(图1)主要由秸秆输送装置、工作试验机和测控系统等部分组成。①秸秆输送装置:将玉米植株按规定株距固定在输送架上,静止不动时,模仿作物的田间生长状态;以一定速度向工作试验机输送玉米植株,模仿机具前进时的状态。②工作试验机:主要由行走底盘、夹持输送部件、摘穗部件等组成,这些部件由变频调速电动机进行单独控制,各部件的运动参数相互独立,可满足各运动部件之间作业参数最佳组合试验的要求。③测控系统:由霍尔传感器、NI 数据采集卡、计算机和速度控制器等组成。

图1 立辊型玉米收获机关键部件试验台

1.3 试验方法

参考文献资料^[3],对影响籽粒损失的因素作单因素试验,从中找出对籽粒造成损失的主要因素作正交试验,以获得最佳工艺条件。每次试验取玉米 10 株,按 L_{16} (4^4) 正交表^[4] 进行试验。各试验重复 3 次,玉米籽粒损失因素水平见表 1,玉米籽粒损失试验安排见表 2。

表 1 玉米籽粒损失因素水平

	因素						
水平	A:摘穗辊 辊型	B:摘穗辊 转速(r/min)	C:机器前进 速度(m/s)	D:籽粒含 水率(%)			
1	矮花纹辊	900	0.56	27.0			
2	平宽花纹辊	1 000	0.83	31.1			
3	平顶花纹辊	1 100	1.11	35.5			
4	圆顶花纹辊	1 200	1.38	38.9			

2 结果与分析

由表 2 可见,4 个因素对籽粒损失的影响顺序为 A > B > D > C,即摘穗辊辊型 > 摘穗辊转速 > 籽粒含水率 > 机器前进速度,最为合理的工艺条件为 $A_4B_2D_2C_1$,即摘穗辊辊型为圆顶花纹辊、摘穗辊转速 $1\,000\,r/min$ 、籽粒含水率 31.1%、机器前进速度 $0.56\,m/s$ 。由于正交试验中没有该组合,所以又进行了 1 次验证试验,在该最佳试验条件下,籽粒损失率为 0.215%。

表 2 玉米籽粒损失正交试验安排及籽粒损失率、级差分析

试验号	A	В	С	D	籽粒损失率(%)			
1	1	1	1	1	0.782			
2	1	2	2	2	0.341			
3	1	3	3	3	1.203			
4	1	4	4	4	1.249			
5	2	1	2	3	0.967			
6	2	2	1	4	0.645			
7	2	3	4	1	0.734			
8	2	4	3	2	0.532			
9	3	1	3	4	0.572			
10	3	2	4	3	0.431			
11	3	3	1	2	0.583			
12	3	4	2	1	0.872			
13	4	1	4	2	0.633			
14	4	2	3	1	0.467			
15	4	3	2	4	0.568			
16	4	4	1	3	0.235			
K_1	3.575	2.945	2.245	2.855				
K_2	2.878	1.884	2.748	2.089				
K_3	2.458	3.088	2.774	2.836				
K_4	1.903	2.888	3.407	3.034				
k_1	0.894	0.739	0.561	0.714				
k_2	0.720	0.471	0.687	0.522				
k_3	0.615	0.772	0.694	0.709				
k_4	0.476	0.722	0.762	0.759				
R	0.418	0.301	0.201	0.237				
优水平	A_4	B_2	C_1	D_2				
主次因素	A > B > D > C							

3 小结与讨论

立辊型玉米收获机对于籽粒损失率指标影响依次为摘穗辊辊型、摘穗辊转速、籽粒含水率和前进速度,得出籽粒损失最小的试验条件为:摘穗辊辊型为圆顶花纹辊、摘穗辊转速1000 r/min、籽粒含水率31.1%、机器前进速度0.56 m/s,此时,玉米籽粒的损失率为0.215%。

在实际作业中,由于摘穗辊的转速为 1 000 r/min、前进速度 0.56 m/s 时生产率很低。为了提高生产率,综合考虑效率与损失利弊,选用摘穗辊的转速为 1 000 r/min、前进速度 1.38 m/s 为玉米收割机作业条件。

参考文献:

- [1] 贺俊林. 低损伤玉米摘穗部件表面仿生技术和不分行喂人机构 仿真[D]. 长春:吉林大学,2007.
- [2] 贺俊林,佟 金,胡 伟,等. 辊型和作业速度对玉米收获机摘穗性能的影响[J]. 农业机械学报,2006,37(3);46-49.
- [3] 裴建杰,范国昌. 对玉米收获中籽粒破碎和损失的影响因素试验研究[J]. 河北农业大学学报,2012,35(1):102-105.
- [4]王钦德. 食品实验设计与统计分析[M]. 北京:中国农业大学出版社,2003.