鲁海菊, 董 梅, 崔同敏, 等. 从枇杷内牛真菌中筛选抗枇杷根腐病菌的活性菌株[J]. 江苏农业科学, 2014. 42(1):95-97.

从枇杷内生真菌中筛选抗枇杷根腐病菌的活性菌株

鲁海菊,董梅,崔同敏,陆林和,赵杰(红河学院生命科学与技术学院,云南蒙自661199)

摘要:采用对峙培养法,从97 株枇杷内生真菌中筛选出对枇杷根腐病病菌有拮抗活性的菌株。结果表明,97 株 真菌对枇杷根腐病病菌均有一定的抑制效果,抑制率≥60%的菌株有25 株,在50%~59%之间的菌株共30 株,在50%以下的菌株42 株。抑制率在50%以上的菌株共55 株,占总数的56.7%,其中P3.9、YPG4、PGSC3′、YPLY1、YPLY2、YPG1、DPG3、DPG4和DPG6等9 株菌株的抑制率均在70%及以上,P3.9和YPG4等2 株菌株抑菌率分别达到88%、82%。

关键词: 枇杷; 根腐病; 内生真菌; 抑菌活性

中图分类号:S436.67*9 文献标志码:A 文章编号:1002-1302(2014)01-0095-03

枇杷「Eriobotrya japonica (Thunb.) L.]为蔷薇科乔木, 是南方主要果树之一。随着栽种面积不断扩大, 枇杷受到各 种真菌病害不同程度的危害,严重影响了枇杷的品质和产量。 在《中国直南总汇》中记载了我国枇杷圆斑病(Phyllosticta eriobotryae)、灰斑病 (Pestalotia eribotryae)、炭疽病 (Glomerella cingulata) 等 18 种真菌性病害[1],中国台湾发现枇杷角斑病 (Cercospora eribotryae)等9种真菌性病害[2],福建省报道枇杷 污叶病(Clasterosporium eriobotryae)等13种真菌性病害[2-3], 截至 2005 年,我国共报道 42 种枇杷真菌性病害[4]。据笔者 调查可知,云南蒙自有5种枇杷真菌性病害,分别为圆斑病、 灰斑病、角斑病、炭疽病和根腐病。其中根腐病尤其严重,它 是由枇杷叶拟盘多毛孢(Pestalotiopsis eriobotrifolia)引起的一 种土传真菌病害。自2005年以来,蒙自枇杷根腐病在各产区 严重发生,发病率超过40%,严重制约着当地枇杷产业的发 展。枇杷根腐病病原菌的种类各地区报道不一致,中国台湾 报道的根腐病是由寄生疫霉(Phytophthora parasitica)引起 的[5],福建莆田报道的由帚梗柱孢属(Cylindrocladium sp.)引 起[6]。而笔者所在的研究组将云南蒙自枇杷根腐病病原菌 初步鉴定为枇杷叶拟盘多毛孢(P. eriobotrifolia)。据文献报 道, 枇杷叶拟盘多毛孢也是枇杷叶部灰斑病[2] 和枇杷花腐 病[7]的病原菌。枇杷根腐病无论是由哪种真菌引起的,其共 同点都是土传真菌病害。化学防治对于土传病害收效其微, 加上化学农药不符合绿色农业生产要求,生物防治日趋受到 人们的重视。内生真菌是一类在健康植物组织内定殖但不会 引起病害症状的真菌[8],具有广阔的开发应用前景。李雅等 以苹果腐烂病菌(Cytospora sp.)、番茄灰霉病菌(Botrytis cintrea)、西瓜枯萎病菌(Fusarium oxysporium f. sp. niveum)、黄

瓜枯萎病菌(Fusarium oxysporium f. sp. cucumerinum)、玉米大斑病菌(Exserohilum turcicum)和白菜黑斑病菌(Alternaria brassicae)为供试菌种,对杜仲(Eucom miaulmoides)的49株内生真菌及其次生代谢物进行抑菌活性测定,结果表明,有9株内生真菌对6种测试菌都有抑制作用,4株内生菌的次生代谢产物对6种测试菌都有抑制作用^[9]。对除虫菊^[10]、冬青卫矛^[11]、连翘^[12]、海金沙^[13]、喜树^[14]和杜仲^[15]内生真菌也开展过类似的生物防治研究。因此,本试验试图从枇杷根、茎、叶和果实中分离到的97株内生真菌中筛选出对枇杷根腐病病菌有拮抗活性的菌株,为枇杷根腐病土传真菌病害的有效、可持续防挖提供生防菌种资源。

1 材料与方法

1.1 材料

- 1.1.1 枇杷内生真菌及枇杷根腐病病原菌 笔者所在的实验室从蒙自枇杷园区采集枇杷根、主干、枝条、老叶、新叶、果实及根腐病病样,常规组织分离^[16]获得供试菌株。
- 1.1.2 供试培养基 供试培养基为 PDA: 马铃薯 200 g、葡萄糖 16 g、琼胶 20 g、蒸馏水 1 000 mL。

1.2 方法

- 1.2.1 对峙培养 将已分离纯化病原菌和内生真菌菌株在 PDA 平板培养基中,28 ℃恒温扩大培养 7 d,采用对峙培养 法 $^{[17]}$ 在培养基同一半径周围用打孔器取直径为 5 mm 的菌丝 块,分别接种于无菌 PDA 平板(直径 90 mm)中,2 个接种点 相距 40 mm,以不接种供试菌株作为对照,设 3 次重复,在 28 ℃ 下恒温培养,7 d 后测定病原菌的菌落直径,计算其生长抑制率:抑制率= $(d_{CK}-d_B)/d_{CK} \times 100\%$,其中 d_{CK} 表示对 照病原菌菌落直径, d_B 表示处理病原菌菌落直径。
- 1.2.2 数据统计 所有试验数据均采用 SPSS 19.0 统计软件进行统计,经 Duncan's 多重比较各处理间的差异显著性。

2 结果与分析

2.1 抑制率≥60%的菌株的抑制效果

表 1 显示,25 株菌株与病原菌对峙培养 7 d 后,病原菌菌 落生长直径与对照直径差异极显著(P<0.01),表明这 25 株

收稿日期:2013-04-26

基金项目:云南省大学生创新试验计划;红河学院博硕项目(编号: XJ1B0912);云南省高校"农作物优质高效栽培与安全控制重点实 验室"建设经费;红河学院硕士点植物保护一级学科建设项目。

作者简介:鲁海菊(1978—),女,云南大理人,博士研究生,副教授,主要从事亚热带植物真菌分类和真菌病害研究。E-mail:luhaiju2011@126.com。

菌株对病原菌有很强的抑制效果。其中,P3.9、YPG4、DPG4、PGSC3'、YPLY1、YPLY2、YPG1、DPG3 和 DPG6 等 9 株菌株抑制效果较好,抑制率达 70% 及以上。

表 1 抑制率≥60%的菌株的抑制效果

AC 2	THE PROPERTY OF A PROPERTY OF	
菌株编号	病原菌菌落直径 (mm)	抑制率 (%)
PGSC3'	22hG	76
PGSC1	36bB	60
PGSC2	36bB	60
PGSC3	32dC	64
PGSC4	$34 \mathrm{cB}$	62
PGSC7	$34 \mathrm{cB}$	62
PGSC9	36bB	60
DPLY13	35bB	61
YPLY1	$23 \mathrm{hG}$	74
YPLY2	$25\mathrm{gF}$	72
YPG1	26fE	71
YPG3	$34 \mathrm{cB}$	62
P3.9	11kJ	88
DPG1	35bB	61
DPG2	$30\mathrm{eD}$	67
DPG3	$27 ext{fE}$	70
DPG4	20iH	78
DPG6	27fE	70
DPZG2	36bB	60
PZT1	32dC	64
PZT2	36bB	60
PZT12	36bB	60
PZT19	35bB	61
YPZG1	36bB	60
YPG4	16jI	82
CK	90aA	
	90aA 后不同小写 大写字母考表	一 一 示

注:同列数据后不同小写、大写字母者表示差异显著(P < 0.05)、极显著(P < 0.01)。下表同。

2.2 抑制率在50%~59%之间的菌株的抑制效果

表 2 显示,30 株菌株与病原菌对峙培养 7 d 后,病原菌菌 落生长直径与对照直径差异极显著(P<0.01),表明这 30 株 菌株对病原菌有很强的抑制效果,且其抑制率在 50% ~ 59% 之间。

2.3 抑制率在50%以下的菌株数量及其抑制效果

表 3 显示,42 株菌株与病原菌对峙培养 7 d 后,病原菌菌 落生长直径与对照差异极显著,表明这 42 株菌株对病原菌有 抑制效果。

3 结论与讨论

本研究结果表明,分离自枇杷根、茎、叶和果中的内生真菌对其根腐病病菌都表现出一定的抑制效果,其中抑制率在70%以上的9株菌株中来自根部的5株,占55.6%;来自叶片的2株,占22.2%;来自主干和果实的各1株,各占11.1%。说明枇杷各个器官都存在抑制根腐病病菌的内生真菌(花中有待研究),但其根部存在的菌株占大多数。

枇杷根腐病症状表现为:初期树势衰退,叶片起初变黄,变成褐色之后脱落;茎基部腐烂,茎干呈暗褐色,根部环腐,不长新根。虽然根部存在大量抑制其根腐病病菌的内生真菌,

表 2 抑制率在 50%~59%之间的菌株抑制效果

表 2 pp 的 4	-在50%。50%之间的图形	小小小小人
菌株编号	病原菌菌落直径	抑制率
图7水纬 与	(mm)	(%)
PGSC5	42eC	53
PGSC 6	$40 \mathrm{eD}$	56
PGSC8	45bB	50
DPLY4	41 dC	54
DPLY10	41 dC	54
DPLY11	43 eC	52
DPLY14	43 eC	52
YPG2	37hG	59
YPZG2	$38 \mathrm{gF}$	58
DPZG1	43 eC	52
DPZG3	42eC	53
DPZG4	43 eC	52
DPZG5	43 eC	52
DPZG6	41 dC	54
DPZG7	43 eC	52
DPZG11	43 eC	52
DPZG12	41 dC	54
DPZG14	$38 \mathrm{gF}$	58
DPZG15	43 eC	52
DPZG16	41 dC	54
DPZG17	42eC	53
DPZG21	$40\mathrm{eD}$	56
DPZG1'	$40\mathrm{eD}$	56
PZT3	37hG	59
PZT5	37hG	59
PZT9	41 dC	54
PZT10	41 dC	54
PZT11	39fE	57
PZT13	$38 \mathrm{gF}$	58
PZT14	$40\mathrm{eD}$	56
CK	90aA	

但是根还是遭到病原菌的侵染危害。本试验的供试内生真菌 中除了 P3.9 是在分离枇杷根腐病病原菌的过程中无意间从 病样中分离获得之外,其余菌株都是从健康枇杷植株中分离 获得的。病株根部是否存在抑制其根腐病病菌的菌株呢? 如 何做到健康植株根部存在的拮抗菌大量定殖,让其免遭病原 菌的侵染危害?这些问题都是今后需要进一步研究的课题。 P3.9 菌株经形态学鉴定为木霉属(Trichoderma)的直菌,对批 杷根腐病病菌的抑制率达到88%。木霉菌是全球普遍应用 的生防真菌,主要用于防治各类植物的土传病害[18],至少对 18属20余种病原菌有拮抗作用[19]。另外,武汉琴等曾报道 茶树内生木霉在其体内成功定殖^[20]。本试验中,P3.9木霉 菌株分离自枇杷主干韧皮部,应属于内生真菌,如果它能在枇 杷各个器官中大量定殖,就可以发挥内生菌作为生防菌独有 的优势:其一,专一性很强,除了对其宿主植物及取食或感染 宿主植物的生物起作用外,对其他生物没有直接影响;其二, 可人工接种导入不同的植物并通过宿主的种子进行遗传[21]; 其三,在植物组织内有足够的碳源、氮源,还受植物组织的良 好保护,具有更稳定的生存环境,更易于发挥生防作用[22]。 因此,P3.9 具有广阔的应用前景,为枇杷根腐病的生物防治 提供了菌种资源。

表 3 抑制率 < 50% 的菌株抑制效果

	14 14 14 14 14 14 14 14 14 14 14 14 14 1	***
菌株编号	病原菌菌落直径 (mm)	抑制率 (%)
PGSJ1	60fF	33
PGSJ2	54kK	40
PGSJ3	$64\mathrm{dD}$	29
PGSJ4	$64\mathrm{dD}$	29
PGSJ5	56jJ	38
PGSJ6	50nN	44
PGSJ7	521L	42
PGSJ9	48pO	47
PGSJ10	61 eE	32
PGSJ11	68eC	24
DPLY1	57 iI	37
DPLY2	50nN	33
DPLY3	48pO	47
DPLY5	$62 \mathrm{eE}$	31
DPLY6	50nN	44
DPLY7	60fF	33
DPLY8	48pO	47
DPLY9	53kK	41
DPLY15	80bB	11
DPLY16	54kK	40
DPLY17	$64\mathrm{dD}$	29
DPG5	$59 \mathrm{gG}$	35
DPG7	58hH	36
DPZG8	46rQ	49
DPZG9	51 mM	43
DPZG10	48pO	46
DPZG13	46rQ	49
DPZG18	$59\mathrm{gG}$	35
DPZG19	48pO	47
DPZG20	58hH	35
DPZG3′	69eC	24
PZT4	54kK	40
PZT6	521L	42
PZT7	51 mM	44
PZT8	51 mM	44
PZT15	51 mM	44
PZT16	4900	46
PZT17	60fF	33
DPXY1	47qP	48
DPXY2	48pO	47
DPXY3	47qP	48
DPXY5	47qP	48
CK	90aA	

参考文献:

[1]戴芳澜. 中国真菌总汇[M]. 北京:科学出版社,1979:1103 -

1164

- [2] 陈福如,杨秀娟. 福建省枇杷真菌性病害调查与鉴定[J]. 福建 农业学报,2002,17(3):151-154.
- [3] 林尤剑,高日霞. 福建枇杷病害与综合防治[J]. 福建果树,1993 (3):58-60.
- [4] 蔡 平,包立军,相人丽,等. 中国枇杷主要病害发生规律及综合防治[J]. 中国南方果树,2005,34(3):47-50.
- [5] Chern L J, Young H R. Root and foot rot of loquat in Taiwan caused by *Phytophthora*[J]. Plant Disease, 1998, 82(6):651-656.
- [6] 庄文远, 吴志珍, 曾忠坚. 枇杷根腐病的发生与防治技术[J]. 广西植保, 2002, 15(1):8-9.
- [7] 瞿付娟, 窦彦霞, 肖崇刚, 等. 枇杷花腐病病原物的初步鉴定[J]. 植物保护, 2008, 34(1):119-122.
- [8] Petrini O. Fungal endophytes of tree leaves [M]// Andrews J H, Hirano S S. Micro-bial ecology of leaves. New York: Springer – Verlag, 1991:179 – 197.
- [9]李 雅,宋晓斌,马养民,等. 杜仲内生真菌对植物病原真菌的抑菌活性研究[J]. 西北农林科技大学学报:自然科学版,2007,35 (2):69-73.
- [10] 易晓华,冯俊涛,王永宏,等. 除虫菊内生真菌 Y2 菌株的分离鉴定及其发酵产物抑菌活性初步研究[J]. 农药学学报,2007,9 (2):193-196.
- [11]李会玲,杨春平,武金占,等. 冬青卫矛内生真菌 2QR1 菌株代谢 产物的杀菌活性 [J]. 西北农林科技大学学报:自然科学版, 2007,35(6):135-140.
- [12] 杨润亚,李艳华,柳娜娜. 连翘内生真菌的分离及其抑菌活性初步研究[J]. 安徽农业科学,2007,35(15):4561-4563.
- [13]江 曙,陈代杰,戈 梅,等. 药用植物内生真菌对 3 种农作物 病原真菌的拮抗作用[J]. 江苏农业科学,2008(1):82 84.
- [14] 蔡永欢,花日茂,柏 钰,等. 喜树内生真菌的分离及其对植物病原菌的抑菌活性测定[J]. 安徽农业大学学报,2010,37(4):748-752.
- [15] 马养民,田从丽,张弘弛. 杜仲内生真菌的分离鉴定及抗菌活性筛选[J]. 时珍国医国药,2011,22(3);552-554.
- [16] 方中达. 植病研究方法[M]. 3 版. 北京: 中国农业出版社, 1998·124.
- [17] 刘治刚. 玉米苗期根腐病生防木霉菌的筛选[J]. 贵州农业科学,2010,38(9):114-115.
- [18] 陈 捷,朱洁伟,张 婷,等. 木霉菌生物防治作用机理与应用研究进展[J]. 中国生物防治学报,2011,27(2):145-151.
- [19] Harman G E, Howell C R, Viterbo A, et al. *Trichoderma* species opportunistic, avirulent plant symbionts [J]. Nature Review Microbiology, 2004, 2:43 56.
- [20]武汉琴,苏经迁,谢明英,等. 茶树内生木霉种的鉴定及其在植物体内的定殖[J]. 菌物学报,2009,28(3);342-348.
- [21]任安芝,高玉葆. 植物内生真菌——类应用前景广阔的资源 微生物[J]. 微生物学通报,2001,28(6):91-93.
- [22]何美仙. 植物内生真菌作为生防因子的研究进展[J]. 植物保护,2005,31(1):10-14.