孙翠翠, 支崇远, 张 传, 等, 舞阳河硅藻生物的多样性[J], 江苏农业科学, 2014, 42(3)·319-323.

舞阳河硅藻生物的多样性

孙翠翠, 支崇远, 张 伟, 李 娅, 孙 丹 (贵州师范大学,贵州贵阳 550001)

摘要:通过对舞阳河底栖硅藻的采样调查,分析了舞阳河流域底栖硅藻的多样性和空间分布特征,并探过了硅藻 优势种与环境因子的关系。结果表明,本次采样共检出底栖硅藻 27 属 528 种(包括亚种和变种)。藻类分布从下游 到上游呈现出一定的规律, 舞阳河以曲壳藻属(Achnanthes) 为主目其所占比例较大。通过相关性分析结果可知, 曲壳 藻属的相对丰度与水体的总磁含量、电导率有很强的相关性。作为优势属、曲壳藻属可进一步发展为舞阳河水质状况 进行监测的指标。

关键词:曲壳藻属:底栖硅藻;舞阳河;多样性

中图分类号:0948.1 文献标志码:A 文章编号:1002-1302(2014)03-0319-04

硅藻是一类分布广、种类多、数量大的藻类植物,尤其是 河流生态系统中藻类植物的重要优势类群[1]。硅藻类群组 合对水环境中物理与化学参数的微小变化反应敏感目迅速, 可用于监测水体酸碱度和富营养化程度,在湖沼学和生态学 中应用广泛[2-3]。在河流中,底栖硅藻生物多样性远远超过 其他藻类[4],底栖硅藻是河流水质监测的重要生物指标[5], 几乎所有的硅藻指数方法都集中在底栖硅藻群落指数的建立 上[6]。底栖硅藻生长环境(湖泊、河流、海洋及土壤)广泛(从 原始水体至极端环境、极其多变的环境状况),对许多环境变 量(pH 值、光、盐度、温度、无机营养含量等)十分敏感。 硅藻 对不同的环境条件所产生的适应机制不同,主要表现在硅藻 丰度与其群体结构的差异上,因此硅藻生物量与硅藻群落组 成的巨大差异是底栖硅藻最显著的特征之一。除此之外,硅 藻对环境的适应在于其能产生一种胞外聚合物(EPS),EPS 的产生与硅藻细胞的附着与滑动是相关的[7-8],而且因为有 壳缝硅藻类能作出响应生长环境变化的运动,因此使其具有 较好的生态优势[9]。

硅藻多样性的研究现在是世界的热门,美国、加拿大、英 国、俄罗斯、丹麦、挪威等国的学者近年正加紧对硅藻多样性 及其应用进行研究,美国和欧盟投入巨资开展了多个单位联 合的硅藻多样性项目研究[10],而目前国内对硅藻多样性及其 应用的研究却相对较少,偏重于对海洋硅藻的研究,对淡水硅 藻的研究不多。贵州省施秉县舞阳河属典型喀斯特地貌,山 产预选地,已经发现有高等植物、苔藓植物、蕨类植物、裸子植

石裸露,其中以硅石和白云岩居多,这样的地理环境为硅藻的 生长提供了良好的环境。同时,施秉作为喀斯特国家自然遗

收稿日期:2013-08-06

物、被子植物多种植物分布,目种类繁多。然而硅藻的系统研 究则鲜有报道,所以研究施秉河流硅藻的分布及生物多样性, 对舞阳河河流的保护与合理开发利用、水环境的检测及其生 杰平衡且有重要竟义。

1 材料与方法

1.1 研究区概况

舞阳河属长江流域洞庭湖水系沅江支流,发源于贵州省 瓮安县境内,经黔东南州黄平、施秉、镇远、岑巩和铜仁地区玉 屏具出湖南新晃、黔阳等地汇入洞庭湖,全长超过400 km,流 域面积11030 km², 总落差490 m。 舞阳河既是流域内工农业 生产生活的重要水源,也是重要水源的涵养地。近年来.随着 城市人口及旅游人口的增加,大量未经处理的生活用水及旅 游垃圾排入河中,严重影响了舞阳河水体生态环境及生物多 样性[11]。無阳河水域现生硅藻类群分析对监测水质变化、维 护生态平衡具有重要的作用。

1.2 采样点设置及样品采集

本研究采样依照文献[12-13]中的水样采集方法,结合 舞阳河自身的环境特征设置 30 个采样点。当场测定水温、 pH值、电导率等,样品于4℃下低温保存,且对每个采样点讲 行底栖硅藻采样,详细位置见图1。

1.3 底栖硅藻的采集和处理

采集在正常水动力条件下不能被移动的石块,用小刀刮取 表面的硅藻。对于激流河段,为了便于样本的采集和处理,至 少采集5块5~15 cm的石块、水生植物、柔软的底泥等自然基 质。采集好的石块样品处理过程如下:(1)刮取硅藻。用硬毛 牙刷或小刀刮取一定面积石块表面上的硅藻,在刮取过程中, 用蒸馏水冲刷,以确保石块、毛刷上的硅藻都被冲进烧杯中。 (2)去钙质与泥沙。加入适量的12 mol/L浓盐酸处理,静置 24 h,或通过加热方法除去溶解性碳酸盐,至样品不起泡为止。 (3) 去有机质。加入适量的 98% 浓硫酸(18.6 mol/L), 静置 24 h,或加热至样品不起泡为止。(4)去酸。加入蒸馏水静置 24 h, 待硅藻沉积在烧杯底部后, 用真空水泵吸除烧杯上清液; 重复操作,至溶液最终 pH 值为7左右。(5)硅藻溶液定容。 根据硅藻密度将硅藻溶液定容至 100 mL。

基金项目:国家自然科学基金(编号:41062005、30560011);贵州省科 技基金(编号:黔科合外 G 字[2012]7023);贵州省科技厅科技支 撑计划(编号:黔科合 SY 字[2012]3178);贵州师范大学研究生专 项创新基金[编号:研(2012)15]。

作者简介:孙翠翠(1987一),女,山东青岛人,硕士研究生,主要从事 植物生理生态学研究。E - mail:545139464@ qq. com。

通信作者:支崇远(1956—),男,贵州贵阳人,博士,教授,主要从事硅 藻生理生态方面的研究。E - mail:zhicy@126.com。

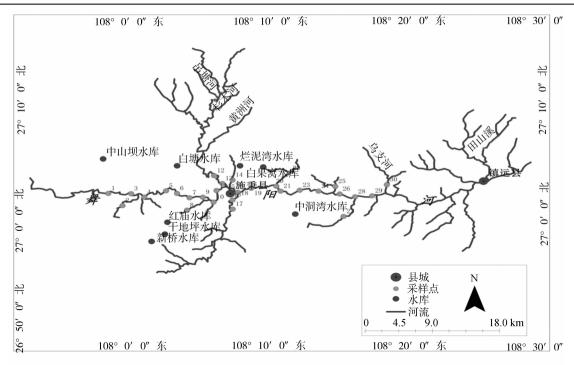


图1 舞阳河样点采集位置

1.4 永久制片和硅藻鉴定及定量

用移液枪吸取已定容后的底栖硅藻样品溶液 500 μL,缓慢以"之"字形移动滴于 20 mm×20 mm 的 2 个盖玻片上,使其均匀分布于盖玻片上,放置 24 h,使硅藻自然沉积于盖玻片上风干。使用 E - 44 环氧树脂与 SK - 8 固化剂,按照 100:15 的配置比例(ZCY epoxy)进行胶的配置。将配置好的胶取少量滴于载玻片上,加热至融化,将放置 24 h 后的有硅藻样—面的盖玻片盖在有胶的载玻片上,放置等胶体风干后即可编号,进行硅藻的观察与鉴定。

1.5 仪器与设备

样品处理及其指标测定应用的仪器设备有尼康显微镜、 灭菌锅、电子天平、便携式电导仪等。

2 结果与分析

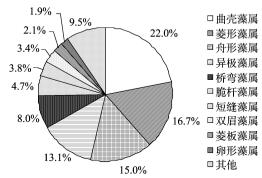
2.1 舞阳河中底栖硅藻属种组成

对舞阳河所采集的样品底栖硅藻进行处理,定量统计分析,共鉴定出硅藻530种(包括变种)3975个,隶属于2纲6目11科28属。从底栖硅藻各个属的种数组成(表1)来看,其中中心纲(Centricae)鉴定出1属5种:小环藻属(Cyclotella)5种5个。羽纹纲(Pennatae)鉴定出27属525种:舟形藻属(Navicula)79种545个,羽纹藻属(Pinnularia)9种36个,辐节藻属(Stauroneis)8种27个,布纹藻属(Gryosigma)6种10个,双壁藻属(Diploneis)1种2个,美壁藻属(Caloneis)2种4个,异菱藻属(Anomoeoneis)1种25个,肋缝藻属(Frustulia)1种1个,脆杆藻属(Fragilaria)25种120个,针杆藻属(Synedra)1种3个,等片藻属(Diatoma)2种7个,具隙藻属(Opephora)1种6个,曲壳藻属116种850个,卵形藻属(Cocconeis)10种289个,变楔藻属(Rhoicosphenia)3种105个,桥弯藻属(Cymbella)42种312个,双眉藻属(Amphora)18种226个,双

菱藻属(Surirella)2种7个,马鞍藻属(Campylodiscus)1种1个,长羽藻属(Stenopterobia)1种138个,菱形藻属(Nitzschia)88种400个,菱板藻属(Hantzschia)11种20个,双肋藻属(Adlafia)4种26个,异极藻属(Gomphonema)69种730个,短缝藻属(Eunotia)20种66个,窗纹藻属(Epithemia)2种11个,棒杆藻属(Rhopalodia)2种3个。

从底栖硅藻各个属的种数组成(图 2)来看,曲壳藻属116种,占总种数的22.0%;菱形藻属88种,占总种数的16.7%;舟形藻属79种,占总种数的15.0%;异极藻属69种,占总种数的13.1%;桥弯藻属42种,占总种数的8%;脆杆藻属25种,占总种数的4.7%;短缝藻属20种,占总种数的3.8%;双眉藻属18种,占总种数的3.4%;菱板藻属11种,占总种数的2.1%;卵形藻属10种,占总种数的1.9%;其他硅藻属种共50种,占总种数的9.5%。显然,曲壳藻属是舞阳河流域底栖硅藻的优势种群。

从底栖硅藻各个属鉴定到的数量组成(图3)来看,曲壳藻属850个,占总个数的21.4%;异极藻属730个,占总个数的18.4%;舟形藻属545个,占总个数的13.7%;菱形藻属400个,占总个数的10.1%;桥弯藻属312个,占总个数的7.8%;卵形藻属289个,占总个数的7.2%;双眉藻属226个,占总个数的5.7%;长羽藻属138个,占总个数的3.4%;脆杆藻属120个,占总个数的3.0%;变楔藻属105个,占总个数的2.6%;其他硅藻属种共260个,占总个数的6.5%。显然曲壳藻属是舞阳河流域底栖硅藻数量最多的属。


2.2 舞阳河中底栖硅藻种类组成与相对丰度

由表2可以看出,30个采样点舞阳河底栖硅藻群落丰富,在不同环境的样点,其优势种有所不同,这可能是受到水体中营养物质含量和水文动力条件发生改变的影响。其中采样点2、3、4、9、11、17、25、27是以曲壳藻属为主,主要有4.

相斗丰庚

表 1 舞阳河底栖硅藻鉴定数据

	表 1 舞	11	桑釜 疋数据	
纲	科	属	种数	鉴定到的硅藻 数量(个)
中心纲	圆筛藻科	小环藻	5	5
羽文纲	舟形藻科	舟形藻	79	545
		羽纹藻	9	36
		辐节藻	8	27
		布纹藻	6	10
		双壁藻	1	2
		美壁藻	2	4
		异菱藻	1	25
		肋缝藻	1	1
	脆杆藻科	脆杆藻	25	120
		针杆藻	1	3
		等片藻	2	7
		具隙藻	1	6
	曲壳藻科	曲壳藻	116	850
		卵形藻	10	289
		变楔藻	3	105
	桥弯藻科	桥弯藻	42	312
		双眉藻	18	226
	双菱藻科	双菱藻	2	7
		马鞍藻	1	1
		长羽藻	1	138
	菱形藻科	菱形藻	88	400
		菱板藻	11	20
	双肋藻科	双肋藻	4	26
	异极藻科	异极藻	69	730
	短缝藻科	短缝藻	20	66
	窗纹藻科	窗纹藻	2	11
		棒杆藻	2	3

图2 舞阳河中底栖硅藻各属种数组成

minutissima var. jackii、A. bioretii Germain、极细曲壳藻(A. minutissima Kutzing)、A. suchlandtii Hustedt、A. saccula Carter、A. biasolettiana var. subatomus,然而各样点的优势种都不太相同;采样点8、14、20、24、26以舟形藻属为主,分别为N. gibbula Cleve、N. dolomitica Bock、N. wiesneri Lange – Bertalot、N. subhamulata Grunow in van Heurck;采样点5、6、13、15、16、21以桥弯藻属为主,分别为边缘桥弯藻(C. affinis Kützing)、C. laeris Naegeli、C. turgidula Grunow、C. silesiaca Bleisch;采样点1、7、12、18、22、23、28、29以卵形藻属为主,分别为C. placentula var. pseudolineata Geitler、C. placentula var. euglypta、C. neothumensis、C. neodiminuta Krammer;采样点10、19、30以异极藻属为主,分别为 G. micropus Kutzing、G. subtile Ehr。

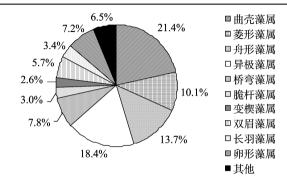


图3 舞阳河中各属底栖硅藻数量组成

舞阳河 30 个底栖硅藻采样点总体以曲壳藻属为主,另外,桥弯藻属与卵形藻属也较多,曲壳藻属、卵形藻属的硅藻是清洁水或寡污水体的指示生物,生长在水质相对较好的环境中,而大多数的桥弯藻属植物生长在污染比较严重的水体中,桥弯藻属的一些种是水体富营养化的典型代表,说明舞阳河大部分采样点水质较好,污染严重的样点较少。舞阳河各样点河水中底栖硅藻优势种及相对丰度见表 2。

表 2 舞阳河河水中底栖硅藻优势种及相对丰度

样点	优势种	相对丰度
件尽	7/L 33 11T	(%)
1	C. placentula var. pseudolineata Geitler	14.93
2	A. minutissima var. jackii	10.57
3	A. bioretii Germain	12.36
4	极细曲壳藻	19.47
5	边缘桥弯藻	12.07
6	C. laeris Naegeli	14.91
7	扁圆卵形藻椭圆变种(C. placentula var. euglypta)	22.71
8	N. gibbula Cleve	9.33
9	A. suchlandtii Hustedt	13.40
10	G. micropus Kutzing	35.36
11	A. saccula Carter	11.79
12	C. neothumensis	28.33
13	C. turgidula Grunow	38.97
14	N. dolomitica Bock	18.92
15	C. silesiaca Bleisch	11.54
16	扁圆卵形藻椭圆变种	15.11
17	A. biasolettiana var. subatomus	12.35
18	C. neodiminuta Krammer	12.12
19	细弱异极藻(G. subtile Her)	13.51
20	N. wiesneri Lange – Bertalot	16.35
21	边缘桥弯藻	21.57
22	扁圆卵形藻椭圆变种(C. placentula var. euglypta)	12.48
23	扁圆卵形藻椭圆变种	16.32
24	N. subhamulata Grunow in van Heurck	21.13
25	A. minutissima var. jackii	12.12
26	N. gibbula Cleve	14.33
27	A. minutissima var. jackii	18.97
28	扁圆卵形藻椭圆变种	22.31
29	扁圆卵形藻椭圆变种	22.52
30	细弱异极藻	17.83

舞阳河流域底栖硅藻种群丰富。有一部分种类在此流域的多个样点均有分布,且数量较多,并成为这一流域河水中主要的种类,成为这个流域的普生种。舞阳河底栖的普生种共有15个种及变种(表3)。

表 3 舞阳河底栖硅藻普生种分布

ā	長3 舞阳冲低栖硅澡晋生种分布	
普生种	分布样点	
A. saccula	2 , 3 , 4 , 5 , 6 , 7 , 11 , 13 , 16 , 17 , 23 , 25 , 27	
A. minutissima var. jackii	2 , 3 , 4 , 8 , 9 , 11 , 14 , 17 , 18 , 20 , 21 , 22 , 23 , 24 , 26 , 27 , 29	
A. pusilla (Grunow) de Toni	3 ,6 ,8 ,9 ,10 ,11 ,20 ,22 ,25 ,27 ,28 ,29	
C. placentula var. lineata (Ehrenberg) Vab Heurck	1 ,2 ,3 ,5 ,7 ,8 ,9 ,10 ,11 ,12 ,14 ,16 ,17 ,18 ,21 ,22 ,23 ,24 ,25 ,26 ,27 ,28 ,29 ,30	
C. scutellum var. speciosa (Greg.) Cleve – Euler	5 ,7 ,9 ,11 ,13 ,14 , ,25 ,27 ,28 ,29 ,30#	
N. circumsuta (Balley) Grunow	6,16,20,21,22,29,30	
C. alpina Grunow	3 ,4 ,7 ,6 ,16 ,20 ,21 ,22 ,23 ,24	
C. silesiaca Bleisch	3 ,4 ,5 ,8 ,9 ,11 ,22 ,26	
边缘桥弯藻	13 \14 \17 \20 \21 \22 \25 \26 \27	
A. montana Krasske	3 ,7 ,8 ,22	
N. gallica var. laevissima (Cleve) Lange – Bertalot	7 \8 \11 \14 \20 \24 \26 \27 \30	
N. viridula var. rostellata	8 ,14 ,18 ,19 ,20 ,24 ,25 ,26	
F. construen (Ehrenberg) Grunow	3,5,6,7	
Gomphonema rhombicum Fricke	1 , 3 , 5 , 6 , 7 , 9 , 10 , 11 , 13 , 20 , 21 , 22 , 23 , 24 , 27 , 28 , 29	
G. entolejum Ostrup	2 , 3 , 4 , 5 , 6 , 8 , 9 , 13 , 14 , 18 , 20 , 21 , 22 , 25 , 26 , 28 , 29	

这些普生种底栖硅藻虽然对水环境的变化比较敏感,但每种硅藻都有较广的生态幅和较强的耐受性。舞阳河中底栖硅藻普生种以曲壳藻属为主,不仅种数最多,分布也较广,主要在采样点2~29,但是分布最普遍的种是 C. placentula var. lineata。除采样点4、6、13、15、19、20没有分布外,其余各点都有分布,而卵形属大多生长于较清洁的水体中,也说明舞阳河总体水质较好,与优势种硅藻分析结果一致。

2.3 舞阳河中底栖硅藻丰度

从图 4 可以看出,舞阳河河水中底栖硅藻丰度在各个采样点的分布上都存在差异。结合图 1 中的"1"在舞阳河采样点中位于大塘村到五旗村附近的 1~9 样点底栖硅藻的丰度除了最高值外其他各点变化不大,范围在 1.953 万~

4.839 万个/cm²之间,一个明显最高值在采样点7上,平均为2.993 万个/cm²,这9个采样点的底栖硅藻丰度较高;位于施秉县城南、城北、城东附近的采样点10~19 中底栖硅藻丰度各有差距,范围在1.025 万~2.976 万个/cm²之间,平均为1.823 万个/cm²,与前一段底栖硅藻丰度相比略有下降;位于舞阳河干流中游附近的采样点20~27 中底栖硅藻丰度普遍较低,且各样点间差距较小,范围在0.432 万~2.253 万个/cm²之间,平均为1.565 万个/cm²,底栖硅藻丰度较小,明显下降;位于舞阳河干流下游的采样点28~30 中底栖硅藻丰度在0.289 万~13.32 万个/cm²之间,平均为0.769 万个/cm²,可见这段舞阳河底栖硅藻丰度明显较前几个区域小,且各采样点之间的差距也比较小。

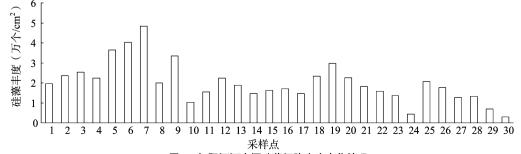


图4 舞阳河河底栖硅藻细胞丰度变化情况

2.4 曲壳藻属与总磷含量及电导率的相关性

曲壳藻属是种类最多的属之一,也是数量最多的属之一, 其种类、数量与个体丰度在空间上均有较大的变化。舞阳河总磷含量为9~178 μg/L,电导率为 36.40~129.50 μS/cm, 从河流上游到下游电导率逐渐减小,总磷含量也呈下降趋势。 在总磷含量和电导率均比较高的水体中,曲壳藻属的相对丰 度也高。它在样品中的相对丰度与总磷含量、电导率呈极显 著正相关关系(P<0.01)。

3 结论

通过对舞阳河底栖硅藻的调查共检测出底栖硅藻有 528 种。不同采样点之间虽然主要属差异不大,但是优势种差异较大,相对丰度也不同。从种类组成及优势种来看,下游河段的水质比上游河段好。曲壳藻属是种类最多的属之一,也是

个体数量最多的属之一,其种类数量与个体丰度在空间上均有明显的规律性变化,可以作为重要的指示类群。通过筛选优势种、普生种说明舞阳河大部分采样点的总体水质较好。其他水质较差的点有待于环保部门对其实施相关措施加以治理。

参考文献:

- [1] Jüttner I, Sharma S, Dahal B M, et al. Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India [J]. Freshwater Biology, 2003, 48(11); 2065 2084.
- [2] Rott E, Duthie H C, Pipp E. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms [J]. Canadian Journal of Fisheries and Aquatic Sciences, 1998, 55 (6): 1443 – 1453.

肖志强, 赵彦锋, 陇南山区近40年农业冰雹灾害发生规律与风险区划研究[J], 江苏农业科学, 2014, 42(3)·323-326,

陇南山区近40年农业冰雹灾害发生规律与风险区划研究

肖志强1,赵彦锋2

(1. 甘肃省陇南市气象局, 甘肃陇南 746000; 2. 上海市宝山区气象局, 上海宝山 201901)

摘要:从青藏高原东侧边坡地带陇南山区 1971—2010 年冰雹资料入手,分析得出:陇南山区冰雹主要集中出现在 5—8 月,5 月和 8 月为 2 个双峰期,降雹时段主要出现在 14:00—20:00 时,占 86%,该时段造成的损失最为严重;降雹的空间分布是西北部多于东南部、山区多于川区,并由西北向东南呈递减趋势,这种分布和当地地貌地形特点也有着较好的对应关系。结合人口、GDP、耕地比等资料,利用 AreGIS 软件,得到冰雹灾害危险性图层,再同承灾体易损性评价、灾害的孕灾背景进行叠加、合并以及等级划分操作,最后得到冰雹灾害的风险评估及其区划,结果表明:陇南市冰雹危险性等级由西北 1 800 m以上高海拔区向东南及低海拔区递减,宕昌县、礼县西北部和武都区西北部、文县西北部高海拔区为冰雹高风险区,两当县、徽县、成县、康县、武都区、文县的东南部低海拔区为冰雹低风险区。

关键词:陇南山区;冰雹;发生规律;灾害风险区划

中图分类号: S427 文献标志码: A 文章编号: 1002 - 1302(2014)03 - 0323 - 04

陇南山区地处青藏高原东侧边坡地带,西部向青藏高原北侧边缘过渡,北部向陇中黄土高原过渡,东部与西秦岭和汉中盆地连接,南部向四川盆地过渡,西秦岭和岷山两大山系分别从东、西两方伸入全境,由于这种特殊的地理位置和地形环境,形成了陇南山区复杂独特的气候特点,即属北亚热半湿润气候向暖温半干旱气候的过渡带,季风性气候特征显著。陇南市辖区内沟壑纵横,高山河谷交错分布,素以"山大沟深"而著称,地势西北高、东南低,是甘肃省唯一的长江流域市区;境内最高山峰雄黄山,海拔为4187 m,座落在文县西北部的屯寨乡境内,最低点罐子沟,海拔为550 m,位于文县东南部的中庙乡境内,亦为甘肃省海拔最低点。由于受山地地形、大气环流和太阳幅射的影响,陇南气候差异悬殊,地域性立体小气候特点十分明显,从而形成了"一山有四季,十里不同天"

收稿日期:2013-07-10

项目基金:甘肃省气象局项目(编号:2013-20)。

- [3] Larsen J. Recent changes in diatom inferred pH, heavy metals, and spheroidal carbonaceous particles in lake sediments near all oil refinery at Mongstad, Western Norway[J]. Journal of Paleolimnology, 2000,23(4);343 – 363.
- [4] Stevenson R J, Pan Y. Assessing ecological conditions in rivers and streams with diatoms M. London; Cambridge University, 1999;11 – 20.
- [5] Kelly M G, Cazaubon A, Coring E, et al. Recommendations for the routine sampling of diatoms for water quality assessments in Europe [J]. J Applied Phycol, 1998, 10(2):215-224.
- [6] Kelly M G, Whitton B A. The trophic diatom index: a new index for monitoring eutrophication in rivers[J]. Journal of Applied Phycology, 1995,7(4):433-444.
- [7] Wang Y, Lu J, Mollet J C, et al. Extracellular matrix assembly in diatoms (Bacillariophyceae) (II. 2,6 Dichlorobenzonitrile inhibition of motility and stalk production in the marine diatom *Achnanthes longi-*

的气候和自然景观特征。雨热同季,四季分明,光热充足是陇南市主要的气候特点。因此,陇南既能生产粮食,也是纹党、当归、红芪、油橄榄、茶叶、大红袍花椒等名贵药材和稀有树种的理想适生区。其中,陇南市白龙江沿岸是公认的全国油橄榄最佳适生区,现有油橄榄 1.333 3 万 hm²,是中国油橄榄栽培种植示范重点区域之一。同时,陇南市又是"中国花椒之乡"和"中国核桃之乡",现有花椒 11.339 万 hm²,种植面积和产量均居全国第一;核桃 22.211 万 hm²,约占全国核桃种植面积的 1/4.是我国核桃主产区。

冰雹是陇南市危害最大的气象灾害之一,它降自强对流单体的特定部位,范围仅几千米至几十千米,具有明显的局地性和分散性。冰雹局地性强、持续时间短、来势猛、强度大,一般都伴有暴雨洪涝、大风,对人民生活、生命财产安全等造成严重危害,特别是对农作物常常造成不可挽回的损失。陇南山区冰雹天气的出现受地形地貌影响很大,局地性很强,很多冰雹因观测地点少而没有记载。从陇南市近40年各气象站冰雹记录分析,冰雹一般出现在3—10月,主要集中在5—8月,其中5月和8月又为2个双峰期,而此时陇南山区冬小麦

pes) [J]. Plant Physiology, 1997, 113(4):1071 - 1080.

- [8] Wustman B A, Lind J, Wetherbee R, et al. Extracellular matrix assembly in diatoms (Bacillariophyceae). III. Organization Of fucoglucuronogalactans within the adhesive stalks of Achnanthes longipes [J]. Plant Physiology, 1998, 116(4):1431-1441.
- [9] Underwood G M. The importance of extracellular carbohydrate production by marine epipelic diatoms [J]. Advances in Botanical Research, 2003, 40:184 240.
- [10] Duong T T, Morin S, Herlory O, et al. Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms [J]. Aquatic Toxicology, 2008, 90(1):19 -28.
- [11] 郭晓玲, 邹方伦. 舞阳河水质微生物污染的初步研究[J]. 贵州 科学, 1997, 9(3): 236-238.
- [12] 吴忠标. 环境监测[M]. 北京:科学出版社,2002:123-128.
- [13]孙 成. 环境监测实验[M]. 北京:科学出版社,2003:277.