於 敏,王海波,张晓辉,等,卡介南多糖核酸对断奶仔猪抗氧化和免疫活性的影响[J],江苏农业科学,2014,42(4):152-154.

卡介菌多糖核酸对断奶仔猪抗氧化和免疫活性的影响

於 敏1,王海波1,张晓辉2,董亚青1,高月秀1

(1. 江苏农牧科技职业学院,江苏泰州 225300; 2. 南京农业大学,江苏南京 210095)

摘要: 将 96 头 28 日龄断奶仔猪随机分为 4 组,分别为卡介菌多糖核酸高剂量组 (60 μ g/kg)、中剂量组 (30 μ g/kg)、低剂量组 (15 μ g/kg)、空白对照组,仔猪按照分组要求注射给药。分别于注射前、注射后 5、10、15、20 d 前腔静脉采血,分离血清,测定血清中总超氧化物歧化酶 (T - SOD)、脂质过氧化物 (LPO)、谷胱甘肽过氧化物酶 (GSH - P_x)、IgG、IgM 含量。结果表明:卡介菌多糖核酸能显著提高仔猪血清中 T - SOD、GSH - P_x、IgG、IgM 含量,显著降低 LPO 含量,且这种抗氧化和免疫增强作用和用药时间、剂量有相关性。

关键词:卡介菌多糖核酸:抗氧化:免疫活性:断奶仔猪

中图分类号: S858.28 文献标志码: A 文章编号:1002-1302(2014)04-0152-03

卡介菌多糖核酸(BCG - PSN) 是从卡介菌中经热酚法处理后提取的新型免疫调节剂,含有多糖、核酸等多种免疫活性物质。BCG - PSN 具有免疫调节及抗炎作用,在改善免疫功能、抗过敏、抗感染方面具有良好疗效^[1-2]。仔猪断奶是一个较强的应激,包括仔猪与母猪隔离,新群体形成,从吃母乳转成吃饲料,环境小气候改变等。仔猪断奶常伴有消化系统紊乱、免疫功能低下、严重腹泻、生长停滞甚至死亡,给生产造成巨大经济损失^[3]。虽然 BCG - PSN 对机体有免疫调节功能,但在仔猪断奶应激模式下是否具有免疫增强作用,以及能否降低仔猪腹泻率却未曾见报道。本研究以断奶仔猪为对象,研究了 BCG - PSN 对断奶仔猪腹泻指标、抗氧化和免疫功能的影响,旨在为解决生产上由于断奶所产生的一系列问题提供依据。

1 材料与方法

1.1 试验动物

28 日龄姜曲海猪断奶仔猪 96 头,购于江苏农牧科技职业学院姜曲海种猪场,公母各半,常规饲养,并按分组要求给予药物。

1.2 试剂与仪器

BCG - PSN 为浙江万马药业有限公司产品,批号: 20110410,其中多糖核酸含量不少于 0.3~g/L;酶标仪,美国 Biotek 公司产品,型号: ELX800;紫外可见分光光度计,日本日立公司产品,型号: U-2910;超氧化物歧化酶(SOD)、脂质过氧化物(LPO)、谷胱甘肽过氧化物酶(GSH- P_x)、IgG、IgM 检测试剂盒购于南京建成生物工程研究所。

1.3 试验设计

将 96 头断奶仔猪随机分为 4 组,每组 3 圈,每圈 8 头,分别为 BCG – PSN 高剂量组(I 组,60 μ g/kg),BCG – PSN 中剂量组(II 组,30 μ g/kg),BCG – PSN 低剂量组(III 组,

15 μg/kg)、空白对照组(W组),空白对照组用生理盐水代替BCG-PSN。每组受试猪进行连续7 d注射给药,首次用药前每头猪空腹称重,以确定给药量。于首次用药前以及用药后5、10、15、20 d,在每圈随机选取仔猪5头,每组15头,前腔静脉采血,分离血清,检测相应指标,试验期共20 d。

1.4 检测指标

1.4.1 观察指标 试验期间每天观察受试猪的精神状态、食欲、粪便、发病、死亡等情况。试验结束后对每头猪再次称重,以确定增重情况。按下式计算腹泻频率:

腹泻频率 = Σ (腹泻仔猪数×仔猪腹泻时间)/(试验仔猪数×正试期时间)×100%。

1.4.2 抗氧化指标检测 用羟胺法测定血清中总超氧化物 歧化酶(T-SOD)含量,LPO、 $GSH-P_X$ 含量检测方法严格按照试剂盒说明进行检测。

1.4.3 免疫球蛋白检测 用免疫抑制法测定血清中 IgG、IgM 含量。

1.5 数据分析

试验数据用 SPSS 18.0 软件进行统计和方差分析。

2 结果与分析

2.1 观察指标

在整个试验期间,各试验组猪未见明显的异常临床表现, 采食、行动、精神状态、呼吸等均正常,部分猪腹泻。

由表1可以看出,在断奶仔猪用药前和用药后,各试验组间平均增重未见显著差异(*P* > 0.05),但 BCG - PSN 高剂量组、中剂量组的平均增重要大于对照组。

表 1 BCG - PSN 对断奶仔猪增重的影响

组别 -	平均体	平均增重(kg)	
	28 日龄	48 日龄	48 日龄
I组	7.34 ± 0.92	14.54 ± 1.53	7.20 ± 1.04
Ⅱ组	7.86 ± 1.70	14.75 ± 0.91	6.89 ± 0.75
Ⅲ组	8.29 ± 2.23	14.15 ± 2.12	5.86 ± 1.07
N组	8.04 ± 1.56	13.95 ± 2.67	5.91 ± 1.76

收稿日期:2013-08-25

基金项目:江苏农牧科技职业学院横向课题(编号:PT1209)。

作者简介:於 敏(1982—),女,江苏南京人,硕士,讲师,主要从事免疫增强剂开发及病理学研究。E-mail:42019802@qq.com。

量组的断奶仔猪腹泻频率显著低于对照组(P < 0.05); BCG - PSN 低剂量组断奶仔猪腹泻频率与对照组差异不显 著,但数值有所下降。

表 2 试验 20 d 时 BCG - PSN 对断奶仔猪腹泻频率的影响

 组别	腹泻频率(%)	_
I 组	3.50 ± 0.57 b	_
Ⅱ组	$4.16 \pm 0.72 b$	
Ⅲ组	5.83 ± 1.30 ab	
N组	$7.50 \pm 1.04a$	

注:同列数字后不同大写、小写字母分别表示在 0.01、0.05 水平上差异显著。下同。

2.2 BCG - PSN 对断奶仔猪抗氧化指标的影响

由表 3 可以看出,用药前各试验组断奶仔猪血清 T-SOD 含量没有显著差异;用药后 5 d,BCG-PSN 中剂量组断奶仔猪血清中 T-SOD 含量和对照组差异显著 (P<0.05);用药后 10 d,BCG-PSN 中剂量组断奶仔猪血清中 T-SOD 含量和对照组仍差异显著 (P<0.05),其他 2 组与对照组之间没有显著差异;用药后 15 d,BCG-PSN 高剂量组、中剂量组、低剂量组断奶仔猪血清中 15 d,15 d 15 d

表 3 BCG - PSN 对断奶仔猪血清中 T - SOD 含量的影响

组别 —			T-SOD含量(U/mL)		
	用药前	用药后 5 d	用药后 10 d	用药后 15 d	用药后 20 d
I组	87.27 ± 14.03	$72.89 \pm 9.02 ab$	$97.04 \pm 6.94 ab$	$119.25 \pm 5.19a$	76.58 ± 10.63
Ⅱ组	66.18 ± 14.51	$94.55 \pm 4.07a$	$105.05 \pm 2.71a$	$110.04 \pm 7.53a$	78.32 ± 17.51
Ⅲ组	57.84 ± 19.84	80.82 ± 12.76 ab	99.45 \pm 3.67ab	$114.01 \pm 8.81a$	87.92 ± 5.56
N组	81.46 ± 10.17	68.46 ± 6.29 b	$88.78 \pm 4.13b$	81.46 ± 12.93 b	97.07 ± 3.61

由表 4 可以看出,在用药前,各试验组断奶仔猪血清中 $GSH-P_x$ 含量间没有显著差异;用药后 5 d, BCG-PSN 高剂 量组断奶仔猪血清中 $GSH-P_x$ 含量和对照组差异显著(P<0.05);用药后 10 d, BCG-PSN 高剂量组断奶仔猪血清中

 $GSH - P_x$ 含量和对照组差异极显著(P < 0.01);用药后 15 d, BCG - PSN 高剂量组断奶仔猪血清中 $GSH - P_x$ 含量和对照组差异显著(P < 0.05);用药后 20 d,各试验组断奶仔猪血清中 $GSH - P_x$ 含量间则没有显著差异。

表 4 BCG - PSN 对断奶仔猪血清中 $GSH - P_X$ 含量的影响

组别	GSH - P _X 含量(U/L)						
组剂 一	用药前	用药后 5 d	用药后 10 d	用药后 15 d	用药后 20 d		
I组	1 341.53 ± 30.65	1 270.76 ± 20.17a	1 258.97 ± 21.51 A	1 133.33 ± 21.69a	1 071.69 ± 19.32		
Ⅱ组	$1\ 130.76 \pm 112.28$	1 138.46 \pm 58.64 ab	$1\ 169.23 \pm 63.97 AB$	$1~087.69 \pm 59.60$ ab	$1\ 077.69 \pm 43.31$		
Ⅲ组	$1\ 183.07 \pm 152.08$	1 055.38 \pm 51.56ab	1 153.84 \pm 96.07 AB	$1\ 035.38 \pm 41.65 ab$	$1\ 030.38 \pm 29.87$		
Ⅳ组	$1\ 010.76 \pm 78.07$	992.31 \pm 122.89b	$1\ 049.\ 23\pm48.\ 86B$	$983.07 \pm 49.45 \mathrm{b}$	$1\ 112.31 \pm 39.79$		

由表 5 可以看出,在用药前,各试验组断奶仔猪血清中LPO 含量间没有显著差异;用药后 5 d,BCG - PSN 中剂量组、低剂量组断奶仔猪血清中LPO 含量和对照组差异显著(P < 0.05);用药后 10 d,BCG - PSN 高剂量组、中剂量组、低剂量

组断奶仔猪血清中 LPO 含量和对照组均差异显著(P < 0.05),但各用药组间差异不显著;用药后 15、20 d,各试验组断奶仔猪血清中 LPO 含量之间没有显著差异。

表 5 BCG - PSN 对断奶仔猪血清中 LPO 含量的影响

组别 —	LPO 含量(μmol/L)						
	用药前	用药后 5 d	用药后 10 d	用药后 15 d	用药后 20 d		
I组	13.65 ± 6.18	$10.45 \pm 4.49 ab$	$0.56 \pm 0.07 \mathrm{b}$	1.15 ± 0.48	1.59 ± 1.17		
Ⅱ组	19.66 ± 8.67	$3.38 \pm 1.13b$	0.57 ± 0.15 b	1.84 ± 0.75	1.24 ± 0.45		
Ⅲ组	18.11 ± 11.59	6.63 ± 0.56 b	$0.45 \pm 0.11b$	0.85 ± 0.11	0.88 ± 0.21		
N组	24.85 ± 9.09	$17.72 \pm 13.54a$	$1.04 \pm 0.23a$	1.18 ± 0.31	3.17 ± 1.84		

2.3 BCG - PSN 对断奶仔猪血清免疫球蛋白的影响

由表 6 可以看出,在用药前,各试验组断奶仔猪血清中 IgG 含量间没有显著差异;用药后 5 d,BCG - PSN 高剂量组断 奶仔猪血清中 IgG 含量和对照组差异显著(P < 0.05);用药后 10 d,BCG - PSN 高剂量组断奶仔猪血清中 IgG 含量和其他 3 组差异显著(P < 0.05);用药后 15 d,对照组断奶仔猪血清中 IgG 含量和其他 3 组差异显著(P < 0.05),但各用药组间没有差异;用药后 20 d,BCG - PSN 高剂量组断奶仔猪血清

中 IgC 含量和 BCG - PSN 低剂量组、对照组差异显著 (P < 0.05)。

由表7可以看出,在用药前,各试验组断奶仔猪血清中 IgM 含量间没有显著差异;用药后5d,BCG-PSN高剂量组 断奶仔猪血清中 IgM 含量和对照组差异显著(P<0.05),其他2组与对照组没有显著差异;用药后10d,BCG-PSN高剂量组断奶仔猪血清中 IgM 含量和对照组差异显著(P<0.05);用药后15、20d,各组断奶仔猪血清中 IgM 含量间没有

组别 —		$D_{ m 340\;nm}$				
	用药前	用药后 5 d	用药后 10 d	用药后 15 d	用药后 20 d	
I组	0.47 ± 0.08	$0.77 \pm 0.11a$	$0.71 \pm 0.08a$	$0.64 \pm 0.07a$	$0.54 \pm 0.07a$	
Ⅱ组	0.39 ± 0.09	$0.51 \pm 0.12ab$	$0.45 \pm 0.10b$	$0.51 \pm 0.07a$	0.43 ± 0.06 ab	
Ⅲ组	0.44 ± 0.09	$0.49 \pm 0.08 ab$	$0.38 \pm 0.04 \mathrm{b}$	$0.56 \pm 0.04a$	$0.29 \pm 0.02b$	
IV ≰目	0.37 ± 0.11	$0.35 \pm 0.09b$	$0.38 \pm 0.04b$	0.36 ± 0.04 b	$0.27 \pm 0.05 \mathrm{b}$	

表 6 BCG - PSN 对断奶仔猪血清中 IgG 含量的影响

耒 7	RCC -	. PSN	对断奶仔猪血清中 IgM 含量	晶的影响
7K /	DCG -	- 1 911		본 다기 묘수비비

组别 ——	$D_{ m 340\;nm}$					
	用药前	用药后 5 d	用药后 10 d	用药后 15 d	用药后 20 d	
I组	0.18 ± 0.02	$0.52 \pm 0.13a$	$0.54 \pm 0.14a$	0.64 ± 0.15	0.42 ± 0.08	
Ⅱ组	0.16 ± 0.02	$0.38 \pm 0.13 ab$	$0.44 \pm 0.13 ab$	0.33 ± 0.15	0.18 ± 0.05	
Ⅲ组	0.23 ± 0.08	$0.46 \pm 0.13 ab$	$0.26 \pm 0.11 ab$	0.51 ± 0.11	0.33 ± 0.11	
N组	0.24 ± 0.13	$0.15 \pm 0.01 \rm{b}$	0.14 ± 0.06 b	0.33 ± 0.13	0.26 ± 0.09	

显著差异。

3 结论与讨论

仔猪断奶后消化系统和免疫器官发育不完善,消化道中酶和胃酸的分泌量不足,正常的肠道微生态系统尚未建立,往往出现食欲差、消化不良、生长迟滞、饲料利用率低、抗病力弱、腹泻、水肿等,给养殖业带来巨大经济损失^[4]。本研究表明,BCG - PSN 处理下仔猪的腹泻频率显著下降,平均增重也比对照组有提高,这可能跟 BCG - PSN 提高机体抗氧化能力和增强免疫力有关。

动物机体内 $SOD \setminus GSH - P_x$ 在清除自由基、氧化损伤、维持细胞结构方面起着重要作用。在应激状态下,血液中 $SOD \setminus GSH - P_x$ 活性降低,而脂质过氧化物 LPO 含量升高[5-6]。本研究中,随着 BCG - PSN 添加水平提高,给药后 $5 \setminus 10 \setminus 15$ d,血清中 $GSH - P_x \setminus T - SOD$ 活性明显升高,与对照组差异显著,添加 $60 \setminus 30$ $\mu g/kg$ 的 BCG - PSN 能改善仔猪断奶后抗氧化能力,缓解应激造成的过氧化损伤,有利于仔猪生长。本研究中,用药前,各试验组仔猪血清中 LPO 含量没有显著差异;给药 $5 \setminus 10$ d 后,用药组仔猪血清中 LPO 含量显著下降,说明 BCG - PSN 能够协同 $SOD \setminus GSH - P_x$ 清除体内脂质过氧化物,抑制膜脂质过氧化作用,减少自由基对机体的病理损伤,具有一定的抗氧化作用。

IgG 是血液中含量最高的免疫球蛋白,在抗体介导的防卫机理中占主要地位,IgG 比其他免疫球蛋白更易逸出血管,参加体表和组织间的防卫^[7]。本研究表明,BCG - PSN 用药组仔猪血清 IgG 含量在断奶应激后缓慢上升,但对照组却下降,二者间差异显著,说明对照组仔猪受断奶应激的影响较大,而 BCG - PSN 能减轻断奶应激,使机体在短时间内建立免疫保护。IgM 由浆细胞分泌,在大多数家畜血清中的含量

仅次于 IgC^[8]。本研究中断奶前供试猪血清 IgM 含量差异不显著;用药后 5、10 d, BCG - PSN 用药组仔猪血清 IgM 含量明显增高,而对照组则下降,二者间差异显著;用药后 15、20 d,虽然用药组和对照组没有显著差异,但用药组 IgM 含量维持在高水平,表明 BCG - PSN 能够提高机体免疫球蛋白的含量,且这种免疫增强作用和用药剂量相关,本研究中以高剂量组效果最为明显。

参考文献:

- [1] Sun J, Hou J, Li D, et al. Enhancement of HIV 1 DNA vaccine immunogenicity by BCG - PSN, a novel adjuvant [J]. Vaccine, 2013,31(3):472-479.
- [2]宁云山,姜德建,刘珊珊. 卡介苗及卡介菌多糖核酸提取物的免疫调节作用及临床应用[J]. 中国生物制品学杂志,2008,21 (1):74-77.
- [3]边传周,王老七. 黄芪多糖对断奶仔猪免疫功能及腹泻的影响 [J]. 畜牧与兽医,2005,37(1):10-12.
- [4]席鹏彬,林映才,蒋宗勇,等. 谷氨酰胺二肽对断奶仔猪生长、免疫、抗氧化力和小肠粘膜形态的影响[J]. 动物营养学报,2007,19(2):135-141.
- [5]廖晓霞,叶均安. 早期断奶仔猪的断奶应激与腹泻研究[J]. 家畜生态学报,2005,26(3):74-77.
- [6]胡 鹏, 占秀安, 郄彦昭, 等. 母种猪饲粮添加 DL 硒代蛋氨酸对后代乳猪胰脏硒含量、抗氧化能力、消化酶活性以及 GSH P_xmRNA 表达的影响 [J]. 动物营养学报, 2010, 22(5): 1361 1366.
- [7]邱小田,张 芸,刘培琼,等. 品种与季节和日龄对仔猪血清中 IgG 含量的影响[J]. 中国畜牧杂志,2006,42(5):13-15.
- [8] 辛凌翔,董 静,王宏宇,等. 卡介菌多糖核酸对 IBDV 感染鸡的 免疫活性研究[J]. 南京农业大学学报,2010,33(6);75-80.