季延滨,孙学亮,陈成勋. 盐度对革胡子鲇部分抗氧化指标的影响[J]. 江苏农业科学,2014,42(8):233-235.

盐度对革胡子鲇部分抗氧化指标的影响

季延滨,孙学亮,陈成勋

(天津农学院水产科学系/天津市水产生态及养殖重点实验室,天津 300384)

摘要:研究了革胡子鲇分别在盐度为 0.4%、0.6%的水体中,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)等抗氧化指标的变化情况。结果显示,随着暴露时间的延长,革胡子鲇各个组织的 SOD 活性、CAT 活性、MDA含量均呈逐渐升高趋势。在盐度为 0.4%的水体中,革胡子鲇的头肾、脾脏浸泡 8 h 后 SOD 活性与 0 h 差异不显著。在盐度为 0.6%的水体中,革胡子鲇血清浸泡 8 h 后 SOD 活性显著高于 0 h。在盐度为 0.4%的水体中,革胡子鲇的肝脏、脾脏浸泡 72 h 后 CAT 活性均显著高于 0 h。在盐度为 0.6%的水体中,革胡子鲇的肝脏、脾脏浸泡 72 h 后 CAT 活性均显著高于 0 h。在盐度为 0.6%的水体中,革胡子鲇的清浸泡 128 h 后 CAT 活性显著高于 0 h。在盐度为 0.4%的水体中,革胡子鲇的血清浸泡 96 h 后 MDA含量均显著高于 0 h。

关键词: 革胡子鲇: 盐度: 抗氧化: 半盐碱水体: 季节性养殖

中图分类号: S965.82 文献标志码: A 文章编号: 1002 - 1302(2014)08 - 0233 - 03

革胡子鲇(Claries lazera)属胡子鲇科,原产于非洲尼罗河,属热带鱼类。革胡子鲇的经济价值很高,不仅具有体型大、生长快、食性杂、适应能力强、便于饲养管理等特点,而且味道鲜美,营养丰富。由于它无肌间刺,也被人们称为"无刺鱼"。同时,革胡子鲇兼有药用价值,用革胡子鲇、黑豆文火煮开,有强精健肾作用。革胡子鲇的鱼头能治疗贫血、耳鸣、重听等症^[1]。天津市多数淡水养殖水体属于半咸水条件。因此,研究盐度对革胡子鲇部分抗氧化指标的影响十分重要。国内学者研究了盐度对部分水产动物的影响^[2-6]。本研究探讨盐度对革胡子鲇超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)等抗氧化指标的影响,旨在为发展革胡子鲇养殖提供理论依据。

1 材料与方法

1.1 材料

革胡子鲇苗种来自天津市德仁水产养殖中心。六须鲇苗种由天津市大港区立达海水资源开发有限公司提供,体长为13.28 ± 3.13 cm。

1.2 方法

试验分盐度 0.4%、0.6% 两个盐度梯度,每个盐度梯度设3 个重复,每个重复放入 30 尾鱼。每天投喂 2 次商品饵料(08:00、16:00 各投喂 1 次),饵料投喂量占鱼体重的 1%,投喂30 min 后虹吸出残饵,驯化 2 周。将驯化后的鱼直接放入上述2 个盐度梯度中,分别于 0.8、24、48、72、96、128 h 取样,每个重复取样 5 尾,每盐度共取样 15 尾,尾部采血。采血前禁食

24 h。所有鱼在采血前均采用 100 mg/L MS - 222 进行快速深度麻醉。取出血液,4 ℃ 4 000 r/min 离心 15 min。取肝、脾、头肾与 0.86% 生理盐按 1:9 冰浴匀浆,4 ℃ 4 000 r/min 离心 15 min。测定血浆中 SOD、MDA、CAT、TP 含量。

1.3 数据处理

用 SPSS 13.0 软件处理数据,数据用平均值 ± 标准误表示。

2 结果与分析

2.1 超氧化物歧化酶(SOD)的活性

由表 1、表 2 可知,随着暴露时间的延长,革胡子鲇各个组织的 SOD 活性逐渐升高。在盐度为 0.4%的水体中,革胡子鲇的头肾、脾脏浸泡 8 h后 SOD 活性与 0 h差异不显著。血清浸泡 72 h后 SOD 活性显著高于 0 h。在盐度为 0.6%的水体中,革胡子鲇血清浸泡 8 h后 SOD 活性显著高于 0 h,脾脏、头肾浸泡 96 h后 SOD 活性与 0 h差异显著。在盐度为 0.6%的水体中,肝脏浸泡 128 h后 SOD 活性显著高于 0 h。

2.2 过氧化氢酶(CAT)的活力

由表 3、表 4 可知,随着暴露时间的延长,革胡子鲇各个组织的 CAT 活性呈逐渐升高趋势。在盐度为 0.4% 的水体中,革胡子鲇的肝脏、脾脏浸泡 72 h后 CAT 活性均显著高于 0 h,头肾浸泡 48 h后 CAT 活性均显著高于 0 h。在盐度为 0.6% 的水体中,革胡子鲇血清浸泡 128 h后 CAT 活性显著高于 0 h,肝脏、头肾浸泡 24 h后 CAT 活性显著高于 0 h,脾脏浸泡 48 h后 CAT 活性显著高于 0 h。

2.3 丙二醛(MDA)含量

由表 5、表 6 可知,随着暴露时间的延长,革胡子鲇各个组织的 CAT 活性逐渐升高。在盐度为 0.4%的水体中,革胡子鲇的血清浸泡 96 h后 MDA 含量显著高于 0 h。肝脏浸泡 128 h后 MDA 含量显著高于 0 h。头肾浸泡 72 h后,MDA 含量与 0 h差异不显著。在盐度为 0.6%的水体中,革胡子鲇血清、脾脏、头肾浸泡 96 h后 MDA 含量均显著高于 0 h。肝脏浸泡 72 h后 MDA 含量显著高于 0 h。

收稿日期:2013-11-04

基金项目:天津市科技支撑计划(编号:06YFGZNC08100);天津教委项目(编号:20070920)。

作者简介:季延滨(1978—),男,天津人,硕士,主要从事水产养殖研究。E-mail:sunxuelaing1234@163.com。

通信作者: 陈成勋, 主要从事水产养殖研究。E-mail: ccxnxy@163.com。

表 1 革胡子鲇在盐度为 0.4%的水体中暴露不同时间各组织 SOD 活性变化

时间	血清中 SOD 活性 (U/mL)	SOD 活性(U/mg)		
(h)		肝脏	脾脏	 头肾
0	95.48 ± 1.88a	14.45 ± 1.70	19.050 ± 0.38 b	17.93 ± 1.85 b
8	$96.46 \pm 1.74a$	15.14 ± 1.99	20.390 ± 1.05 ab	18.74 ± 0.53 ab
24	$97.12 \pm 5.89 \mathrm{ab}$	15.68 ± 2.98	21.100 ± 0.38 ab	19.51 ± 0.53 ab
48	$101.41 \pm 3.75 \mathrm{ab}$	16.08 ± 3.07	21.680 ± 2.79 ab	$20.39 \pm 3.01 ab$
72	110.00 ± 2.52 b	16.46 ± 1.72	$22.170 \pm 0.42 ab$	$20.88 \pm 0.31 ab$
96	$110.67 \pm 1.23 \mathrm{b}$	17.27 ± 3.10	$22.7740 \pm 0.53a$	$21.88 \pm 1.07a$
128	111.66 ± 5.12b	17.68 ± 4.30	22.970 ± 2.44a	22.22 ± 1.56a

注:同列数据后不同小写字母表示差异显著。表2至表6同。

表 2 革胡子鲇在盐度为 0.6% 的水体中暴露不同时间各组织 SOD 活性变化

时间 (h)	血清中 SOD 活性 (U/mL)	SOD 活性(U/mg)		
		 肝脏	脾脏	头肾
0	60.12 ± 1.42c	13.21 ± 2.60b	15.83 ± 2.62b	16.81 ± 1.17b
8	$82.26 \pm 2.95 \mathrm{b}$	14.82 ± 0.64 ab	17.33 ± 1.58 ab	16.99 ± 0.05 b
24	92.17 \pm 40.00ab	$15.41 \pm 4.33 \mathrm{ab}$	$17.46 \pm 1.57 \mathrm{ab}$	17.30 ± 1.63 b
48	95.80 ± 1.84 ab	15.94 ± 3.20 ab	$17.70 \pm 0.77 \mathrm{ab}$	19.01 ± 2.09 ab
72	102.74 ± 3.66 ab	$16.43 \pm 1.91 \mathrm{ab}$	18.54 ± 1.16 ab	20.37 ± 1.39 ab
96	$110.99 \pm 4.13a$	17.72 ± 2.53 b	$20.04 \pm 0.59a$	$22.30 \pm 2.71a$
128	$113.64 \pm 1.88a$	$17.87 \pm 3.62a$	$20.74 \pm 1.55a$	22.44 ± 1.17a

表 3 革胡子鲇在盐度为 0.4% 的水体中暴露不同时间各组织 CAT 活性变化

时间 (h)	血清中 CAT 活性 (U/mL)	CAT 活性(U/mg)		
		肝脏	脾脏	头肾
0	6.48 ± 0.56	22. 18 ± 2. 20c	27.65 ±0.58c	1.05 ±0.05d
8	6.91 ± 0.43	$23.33 \pm 3.61 \mathrm{bc}$	$29.18 \pm 2.91 \mathrm{bc}$	$1.07 \pm 0.03 \mathrm{d}$
24	7.09 ± 1.23	$27.38 \pm 4.73 \mathrm{bc}$	30.14 ± 1.16 be	$1.10\pm0.08\mathrm{cd}$
48	7.15 ± 1.09	$31.82 \pm 4.95 \mathrm{bc}$	30.96 ± 1.16 be	$1.21\pm0.12\mathrm{bc}$
72	7.35 ± 0.85	32.46 ± 2.86 ab	$31.80 \pm 1.07 \mathrm{ab}$	$1.31 \pm 0.01 \mathrm{b}$
96	7.71 ± 1.76	$35.69 \pm 4.58a$	33.64 ± 0.52 ab	$1.41 \pm 0.05 \mathrm{ab}$
128	7.89 ± 1.52	$36.50 \pm 4.35a$	$34.66 \pm 1.06a$	$1.47 \pm 0.02a$

表 4 革胡子鲇在盐度为 0.6% 的水体中暴露不同时间各组织 CAT 活性变化

时间 (h)	血清中 CAT 活性 (U/mL)	CAT 活性(U/mg)		
		肝脏	脾脏	头肾
0	3.57 ± 1.76a	29.60 ± 12.50a	27.51 ± 1.59d	2.09 ± 0.06e
8	$4.25 \pm 1.69a$	31.32 ± 5.50 ab	$29.13 \pm 1.03 \mathrm{cd}$	$2.32\pm0.07\mathrm{de}$
24	$4.74 \pm 1.34 ab$	$34.59 \pm 1.77b$	$29.89 \pm 0.90 \mathrm{cd}$	$2.49 \pm 0.09 \mathrm{d}$
48	$4.91 \pm 2.01 \mathrm{ab}$	$36.81 \pm 1.99 bc$	$31.05 \pm 0.83c$	$2.80 \pm 0.21c$
72	$5.24 \pm 0.84 ab$	$39.26 \pm 6.79 \mathrm{bc}$	34.11 ± 0.50 b	$2.91\pm0.02\mathrm{bc}$
96	$6.02 \pm 1.27 ab$	$40.37 \pm 1.54c$	$35.92 \pm 1.11 ab$	$3.06 \pm 0.07 \mathrm{b}$
128	$6.14 \pm 1.97 \mathrm{b}$	$43.07 \pm 1.33 c$	$37.51 \pm 0.96a$	$3.43 \pm 0.05a$

表 5 革胡子鲇在盐度为 0.4% 的水体暴露不同时间各组织 MDA 含量变化

 时间	血清中 MDA 含量		MDA 含量(nmol/mg)	
(h)	(nmol/mL)	肝脏	脾脏	 头肾
0	$25.76 \pm 6.37b$	1.84 ± 0.73 b	3.19 ± 0.49	$3.08 \pm 0.30c$
8	$28.78 \pm 6.98 \mathrm{b}$	$2.02 \pm 1.00 \mathrm{b}$	3.34 ± 0.63	$3.21 \pm 0.08c$
24	31.25 ± 7.75 be	$2.23 \pm 0.72b$	3.39 ± 0.53	$3.56 \pm 0.56c$
48	$34.12 \pm 1.54 \mathrm{bc}$	$2.66 \pm 0.49 ab$	3.46 ± 0.27	$3.78\pm0.12\mathrm{bc}$
72	$38.27 \pm 1.86 \text{bc}$	$3.03 \pm 1.44 ab$	3.55 ± 0.41	4.29 ± 0.39 b
96	$47.45 \pm 1.69ac$	$3.28 \pm 1.65 ab$	3.71 ± 0.28	$5.20 \pm 0.16a$
128	$54.90 \pm 2.56a$	$3.79 \pm 1.47a$	4.10 ± 1.02	$5.26 \pm 0.06a$

时间	血清中 MDA 含量	MDA 含量(nmol/mg)		
(h)	(nmol/mL)	 肝脏	脾脏	头肾
0	26.24 ± 3.29b	1.67 ±0.38c	2.83 ±0.38a	2.01 ±0.04c
8	$26.51 \pm 1.17b$	$1.83\pm0.54\mathrm{bc}$	$3.08 \pm 0.34 ab$	$2.18 \pm 0.12c$
24	$27.69 \pm 2.22b$	$2.16\pm0.33\mathrm{bc}$	$3.33 \pm 0.50 ab$	$2.32\pm0.06\mathrm{bc}$
48	$30.08 \pm 1.42b$	$2.36 \pm 0.76 \mathrm{bc}$	$3.35 \pm 0.47 ab$	$2.53 \pm 0.38 \mathrm{bc}$
72	$38.24 \pm 2.29 $ b	$2.60 \pm 0.80 \mathrm{b}$	$3.52 \pm 0.07 ab$	$2.59 \pm 0.15 \mathrm{bc}$
96	$51.25 \pm 1.91a$	$3.33 \pm 0.93 \mathrm{ab}$	$3.74 \pm 0.25 b$	3.07 ± 0.65 b
128	$60.12 \pm 1.22a$	$3.88 \pm 0.58a$	$4.08 \pm 0.60 \mathrm{b}$	$3.96 \pm 0.36a$

表 6 革胡子鲶在盐度为 0.6%的水体中暴露不同时间各组织 MDA 含量变化

3 结论与讨论

3.1 盐度对革胡子鲇 SOD 活性的影响

SOD 几乎存在于所有动物的细胞中,对机体的氧化与抗氧化平衡起着至关重要的作用,此酶能清除超氧阴离子自由基,保护细胞免受损伤,是动物体内一种重要的抗氧化保护酶^[7]。SOD 是机体免疫调节网络的重要组成部分,是最重要的特异性氧自由基清除剂,也是一种十分重要的抗氧化酶,能保护生物体免受自由基的攻击伤害。SOD 含量变化在一定程度上能反映机体免疫力的大小。SOD 的主要功能是通过消除盐分胁迫诱导产生的活性氧自由基,降低或消除活性氧自由基对膜脂的攻击能力,保护膜脂不致发生过氧化作用而受损^[8]。本研究表明,在盐度分别为 0.4%、0.6%的水体中,革胡子鲇各组织的 SOD 活性均随暴露时间的延长而逐渐增加。这可能是由于水体盐度增大导致鱼体发生了应激反应,使得鱼体部分组织的 SOD 活性增强。

3.2 盐度对革胡子鲇 CAT 活力的影响

过氧化氢酶 CAT 是一种清除自由基的主要酶类, CAT 在细胞内主要通过与线粒体及过氧化氢体结合, 将细胞代谢产生的毒性物质 H₂O₂ 迅速催化分解为 H₂O 和 O₂, 清除过氧化氢, 防止羟自由基的形成, 在生物体的抗氧化防御系统中占有重要地位^[9-11]。生物体内 CAT 酶活力下降, 标志着机体清除自由基的能力下降。从污染水域捕获的鲻鱼肝脏的 CAT 活性显著高于未受污染水域的鲻鱼。生活在造纸厂废水中的鲇鱼体内 CAT 活性明显升高。在盐度为 0.4%、0.6% 水体中,革胡子鲇各组织 CAT 活性均随着时间的延长而增加, 这可能是由于水体盐度的增大导致鱼体发生了应激反应, 鱼体部分组织的 CAT 活性增加, 有效提高了鱼体的免疫防御能力。水体盐度越高, 对鱼体部分组织的 CAT 活性影响也更大。

3.3 盐度对革胡子鲇 MDA 含量的影响

MDA 反映了机体受氧化损伤的程度,其含量可间接反映机体的活性氧自由基、膜脂过氧化水平,从而间接反映细胞受损伤的程度。机体在受到环境污染(有机物、重金属、农药等)及理化因子的胁迫时,机体会通过超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPX)等抗氧化酶的联合作用来清除活性氧自由基,这也是机体应对不利环境、防止中毒的一种方式[12]。本研究表明,在盐度为

0.4%、0.6%的水体中,革胡子鲇的不同组织 MDA 含量均随着暴露时间的延长而逐渐增加,这可能是由于水体盐度增大导致鱼体组织受到了较大的刺激,从而使 MDA 含量增加,说明长时间生存在高盐度的水中会对鱼体造成伤害,特别是对鱼体的免疫防御能力造成伤害,水体盐度越高,对鱼的伤害可能也越大。

本研究表明,革胡子鲇对环境盐度变化较敏感,说明革胡子鲇不适宜长时间生活在盐度高的水体中。今后在一些半咸水体地区,特别是天津市周围地区,可以季节性的饲养一些鲇形目鱼类,从而创造更高的经济价值。

参考文献:

- [1]马书军. 革胡子鲶的生物学特性与池养技术[J]. 水产养殖, 1998(4):3-4.
- [2]李星星,刘贤敏,冷向军. 盐度对淡水鱼生长、代谢和肉质的影响 [J]. 养殖与饲料,2008(10):47-50.
- [3] 冯 娟,徐力文,林黑着,等. 盐度变化对军曹鱼稚鱼相关免疫因子及其生长的影响[J]. 中国水产科学,2007,14(1):120-125.
- [4]王信海, 蔺玉华, 姜秋俚, 等. 盐度对咸海卡拉白鱼生长及组织学特征的影响[J]. 中国水产科学, 2008, 15(5): 808-815.
- [5]赵 峰,庄 平,李大鹏,等. 盐度对施氏鲟和西伯利亚鲟稚鱼的 急性毒性[J]. 生态学杂志,2008,27(6);929-932.
- [6]王 帅,高如承,温扬敏,等. 盐度突变对中国血蛤非特异性免疫 酶活性的影响[J]. 江苏农业科学,2008(5);213-215.
- [7] 贾秀英, 陈志伟. 铜、镉对鲫组织超氧化物歧化酶活性的影响 [J]. 水牛生物学报, 2003, 27(3); 323 325.
- [8] Dalla V. Salinity response in brickis water populartions of the freshwater shrimp *Palaemonetes antennarius* I. Oxygen consumption[J]. Comp Biochem Physio, 1987,87(2):471-478.
- [9] Yücel D, Dalva K. Effect of *in vitro* hemolysis on 25 common biochemical tests[J]. Clinical Chemistry, 1992, 38(4):575-577.
- [10]吴 垠,孙建明,周遵春. 温度对中国对虾、日本对虾主要消化酶活性的影响[J]. 大连水产学院学报,1997,12(2):17-24.
- [11] 符泽雄. 南美白对虾高产养殖试验报告[J]. 海洋渔业,2000 (2):68-70.
- [12] 谭树华,何典翼,严 芳,等. 亚硝酸钠对鲫鱼肝脏丙二醛含量和总抗氧化能力的影响[J]. 农业环境科学学报,2005,24(增刊):21-24.