张西亚,袁 红, 郜路珊. 玉米秸秆制备乙醇预处理及水解工艺的研究[J]. 江苏农业科学,2014,42(10):273-275.

玉米秸秆制备乙醇预处理及水解工艺的研究

张西亚,袁 红,郜路珊

(北方民族大学化学与化学工程学院,宁夏银川 750021)

摘要:以玉米秸秆为原料,利用 2% NaOH 溶液对原料进行预处理,并研究预处理温度、时间、秸秆粒度对纤维素、半纤维素、木质素的含量以及脱除率的影响。结果表明,当温度为 100 ℃、时间为 4 h、粒度为 16 目时,半纤维素和木质素的脱降率达 90.6% 和 86.4%,纤维素含量达 53%。采用浓硫酸法对预处理后的秸秆进行水解工艺研究,在比较了液固比、时间、温度、酸浓度等单因素影响后,采用正交试验进行优化,得到最佳水解工艺的条件:温度为 50 ℃、时间为 10 min、硫酸浓度为 72%、液固比为 10 mL:1 g。

关键词:玉米秸秆:预处理:碱法:水解:浓硫酸

中图分类号:TQ353.6+4 文献标志码:A 文章编号:1002-1302(2014)10-0273-03

我国经济飞速发展,能源供应紧张的问题也日益突显。 相比较干汽油,乙醇燃料可减少90%的温室气体排放,因此 是一种很好的环保能源[1]。自然界中有丰富的植物纤维,我 国农作物秸秆年产近7×10⁸ 吨^[2],采用秸秆进行能源转化可 以得到燃料乙醇,相对于以粮食为原料生产乙醇,不仅可充分 利用农林废弃物,而且可避免对粮食资源的消耗。秸秆主要 组成是纤维素、半纤维素和木质素, 秸秆制备乙醇的工艺主要 由原料预处理、水解糖化和发酵3步构成。秸秆中的纤维素 可水解为6碳糖.再通过生物发酵转化成乙醇。由于纤维素 被木质素层层包裹,而且其本身是高度有序晶体结构,因此须 通过预处理,使纤维素、半纤维素、木质素分离开,破坏晶体结 构,降低聚合度[3]。原料预处理方法主要有物理法、物理化 学法、化学法和生物法。物理法主要包括机械粉碎和热水法, 机械粉碎是采用剪切或研磨缩小物料的粒度,以期提高原料 的比表面积,降低植物纤维的结晶度,机械粉碎法现已不单独 使用,多与其他方法配合使用。热水法是采用高温热水溶解 半纤维素及脱出部分木质素,该方法存在消耗大量热水的缺 点[4]。物理化学法是采用高压蒸汽处理原料,破坏原料细胞 壁结构,使木质素和纤维素分离,缺点是对设备要求高,产生 的副产物较多[5]。化学方法是在原料中加入酸或碱,破坏植 物纤维的晶型结构,使木质素与纤维素相互剥离,同时溶解半 纤维素。碱法预处理是通过碱与连接半纤维素间、半纤维素 与木质素间的酯键发生皂化作用,从而破坏连接键,降低植物 纤维的聚合度、结晶度,碱法可有效脱除木质素[6]。本研究 采用玉米秸秆为原料,采用碱法进行原料预处理,考察了预处 理工艺中温度、时间和粒度对纤维素、半纤维素、木质素含量 以及脱除率的影响;采用浓硫酸法对预处理后的秸秆进行了

水解研究,考察水解工艺中液固比、时间、温度、硫酸浓度对还原糖得率的影响,在此基础上进行了水解工艺的正交优化。

1 材料与方法

1.1 原料与试剂

玉米秸秆产于宁夏北方民族大学附近,粉碎、过筛(16目),水洗,80℃烘至恒重,贮存备用,其纤维素、半纤维素和木质素的含量分别为47.0%、23.6%、35.0%。其他用到的各种试剂均为分析纯。

1.2 预处理工艺

称取秸秆 15 g,按液固比 10 mL:1 g 加入 2% NaOH 溶液,在不同温度下搅拌处理一定时间,抽滤,残渣用热水洗至中性,80 ℃烘至恒重,称重备用。取样进行主要成分(素纤维、半纤维素、木质素)分析测定。

1.3 纤维物料组分测定

采用硫酸法^[7]测定秸秆中的木质素含量,硝酸乙醇法^[8]测定秸秆的纤维素含量,采用 80% 硝酸钙溶液加热法、2 mol/L 盐酸水解法结合 DNS 法,测定还原糖含量及秸秆的半纤维素含量^[9-10],还原糖得率可根据还原糖含量计算,由于葡萄糖为标准品,而实际产物中糖的种类较多,乘以系数 0.9 进行修正^[11]:

还原糖得率 = $(0.9 \times C_{\rm \# Lakeg} \times 500 \times 10^{-3})/m_{\it \#} \times 100\%$ 。式中: $m_{\it \#}$ 为样品质量(g); $C_{\it \# Lakeg}$ 为还原糖含量(g)。

1.4 浓硫酸水解秸秆制葡萄糖

取预处理后纤维素含量最高的原料,在一定的硫酸浓度、液固比、温度下水解一定时间后,加70% NaOH 中和至 pH 值为7,真空抽滤,取棕褐色滤液测其还原糖含量。

2 结果与讨论

2.1 预处理工艺的单因素研究结果

2.1.1 预处理温度的影响 在氢氧化钠浓度为 2%, 粒度为 16 目, 液固比为 10 mL:1 g, 温度分别为 70、80、90、100 ℃下 预处理 1 h, 纤维素、半纤维素及木质素的含量如表 1 所示, 脱除率如表 2 所示。由表 1 可知, 随着预处理温度的升高,纤维素含量呈上升趋势, 而半纤维素和木质素含量呈下降趋势。

收稿日期:2013-12-15

基金项目:国家自然科学基金(编号:21266001);宁夏回族自治区科技支撑计划(编号:2012zvg008)。

作者简介: 张西亚(1979—), 女, 硕士, 讲师, 主要从事有机合成研究。 E-mail: zhangxiya1212@163. com。

通信作者: 袁 红, 博士, 副教授, 从事可再生能源研究。 E - mail: yhyxw_co@ 163. com。

从表 2 可以看出,随着温度的升高,三者的脱除率都提高,但是半纤维素和木质素的提高幅度远大于纤维素,因此,随着温度升高,纤维素含量提高而半纤维素和木质素含量降低。预处理的目的是去除半纤维素和木质素,预处理温度在90、100 ℃时,纤维素含量提高不明显,因此,选定100 ℃为预处理温度较为合适。

表 1 温度对各组分含量的影响

试验	温度	时间	粒度	当	且分含量(%)	
迅短	(\mathcal{C})	(h)	(目)	纤维素	半纤维素	木质素
0				47	23.6	35
1	70	1	16	59	19.3	32
2	80	1	16	62	17.3	30
3	90	1	16	66	14.0	28
4	100	1	16	68	11.4	24

表 2 温度对各组分脱除率的影响

试验	温度 (℃)	时间 (h)		重量损失(%)		脱除率(%) 半纤维素	
1	70	1	16	20.4	0.1	34.9	27.2
2	80	1	16	25.1	1.2	45.1	35.8
3	90	1	16	30.5	2.4	58.8	44.4
4	100	1	16	35.4	6.5	68.8	55.7

2.1.2 预处理时间的影响 在温度为 100 ℃, 粒度为 16 目, 氢氧化钠浓度为 2%, 预处理时间分别为 1、2、3、4 h, 纤维素、半纤维素及木质素的含量如表 3 所示, 脱除率如表 4 所示。由表 3 可知,随着预处理时间的增加, 纤维素、半纤维素和木质素含量呈下降趋势, 在反应时间 1 h 时纤维素含量最高, 为 68%, 因此反应在 1 h 时达到最佳。由表 4 可以看出,随着时间的增加, 三者的脱除率都提高, 但是半纤维素和木质素的提高幅度远大于纤维素。预处理的目的是去除半纤维素和木质素, 因此,选定 4 h 为预处理时间较为合适。

表 3 时间对各组分含量的影响

试验	₁₀ 温度 时间 粒度		组	且分含量(%)		
迅驰	(℃)	(h)	(目)	纤维素	半纤维素	木质素
1	100	1	16	68	11.4	24
2	100	2	16	64	8.2	20
3	100	3	16	65	7.8	16
4	100	4	16	53	5.1	11

表 4 时间对各组分脱除率的影响

试验	温度	时间	粒度	重量损失 (%)	<u></u>	说除率(%))
	(°C)	(h)	(目)	(%)	纤维素	半纤维素	木质素
1	100	1	16	35.4	6.5	68.8	55.7
2	100	2	16	36.2	13.1	77.8	63.5
3	100	3	16	40.3	17.4	80.3	72.7
4	100	4	16	57.7	51.2	90.6	86.4

2.1.3 预处理粒度的影响 在温度为 $100 \, ^{\circ}$ 、氢氧化钠浓度为 2% ,粒度分别为 16 、30 、40 、60 目下预处理 1 h,纤维素、半纤维素及木质素的含量如表 5 所示,脱除率如表 6 所示。由表 5 可知,反应在 30 目下时纤维素含量达到最大,当继续提

高反应目数,纤维素含量降低。由表 6 可以看出,在 60 目时木质素和半纤维素的脱除率达到最大。预处理的目的是去除半纤维素和木质素,综合表 5 和表 6,选择 60 目的条件较合理。

表 5 粒度对各组分含量的影响

试验	温度	时间	粒度	丝	且分含量(%)	
迅业	(%)	(h)	(目)	纤维素	半纤维素	木质素
1	100	1	16	53	5.1	11
2	100	1	30	60	11.8	23
3	100	1	40	45	7.5	20
4	100	1	60	49	5.0	15

表 6 粒度对各组分脱除率的影响

试验 温度		时间	粒度	重量损失		说除率(%))
风迎	(°C)	(h)	(目)	(%)	纤维素	半纤维素	木质素
1	100	1	16	35.4	6.5	68.8	55.7
2	100	1	30	38.5	21.5	69.3	59.6
3	100	1	40	40.4	42.9	81.1	65.9
4	100	1	60	45.7	43.4	88.5	76.7

2.2 水解工艺的研究

2.2.1 水解工艺的单因素研究结果 (1)液固比的影响。在硫酸浓度为 72%,水解温度为 50 $^{\circ}$ 、水解时间为 10 min,液固比分别为 10 mL: 1 g、15 mL: 1 g、20 mL: 1 g,测得还原糖得率如表 7 所示。从表 7 可以看出,随着液固比的增大还原糖得率减小,因为过多的硫酸会碳化纤维素,致使其得率降低。因此,选定液固比为 10 mL: 1 g 为水解液固比较合适。

表 7 液固比对还原糖得率的影响

试验	液固比(mL:g)	还原糖得率(%)
1	10: 1	16.1
2	15: 1	14.3
3	20: 1	11.8

(2)时间的影响。在硫酸浓度为 72%,液固比为 10 mL:1 g,温度为 50 ℃,水解时间分别为 5、10、15 min,测得还原糖得率如表 8 所示。从表 8 可以看出,随着时间的增大还原糖得率先增大后减小,因为反应时间越长使得纤维素碳化,致其得率降低。因此,选定水解时间为 10 min 比较合适。

表 8 水解时间对还原糖得率的影响

试验	时间(min)	还原糖得率(%)
1	5	14.1
2	10	16.9
3	15	15.9

(3)温度的影响。在硫酸浓度为 72%,液固比为 10 mL:1 g,反应时间为 10 min,水解温度分别为 40、50、60 ℃,测得还原糖得率如表 9 所示。从表 9 可以看出,随着温度的升高还原糖得率先增大后减小,因为反应温度越高越加速纤维素碳化,致其得率降低。因此,选定水解温度为 50 ℃比较合适。

表 9 温度对还原糖得率的影响

 试验	温度(℃)	还原糖得率(%)
1	40	10.0
2	50	12.7
3	60	11.9

(4)硫酸浓度的影响。在液固比为 10 mL: 1 g,温度为 50 ℃,反应时间为 10 min,硫酸浓度分别为 62%、72%、82%,测得还原糖得率如表 10 所示。从表 10 可以看出,随着硫酸浓度的升高还原糖得率先增大后减小,因为高浓度的硫酸会使纤维素碳化,致其得率降低。因此,硫酸浓度为 72% 比较合适。

表 10 硫酸浓度对还原糖得率的影响

试验	硫酸浓度(%)	还原糖得率(%)
1	62	16.1
2	72	21.7
3	82	8.6

2.2.2 水解工艺的正交试验结果分析 将预处理后的残渣用浓硫酸溶液水解,并设计 $L_9(3^4)$ 正交试验来分析水解温度、硫酸溶液浓度、反应时间和固液比对水解后还原糖得率的影响。在水解温度分别为 40(1)、50(2)、60 $^{\circ}$ C(3),硫酸浓度分别为 62%(1)、72%(2)、82%(3)(质量分数),反应时间分别为 5(1)、10(2)、15 min(3),液固比分别为 10(1)、15(2)、20 mL: 1 g(3)的条件下,水解后还原糖得率如表 11 所示。

表 11 水解正交试验结果

编号	温度	时间	硫酸浓度	液固比	还原糖得率 (%)
1	1	1	1	1	13.4
2	1	2	2	2	11.5
3	1	3	3	3	9.1
4	2	1	2	3	16.6
5	2	2	3	1	19.7
6	2	3	1	2	14.9
7	3	1	3	2	11.4
8	3	2	1	3	13.6
9	3	3	2	1	14.3
k_1	11. 33	13. 82	13. 97	15. 78	
k_2	17.06	14. 91	14. 13	12.60	
k_3	13.11	12.77	13.40	13. 12	
R	5.74	2.13	0.73	3.18	

通过正交试验数据可以看出,由离差平方和 R 数值的大

小说明温度、时间、硫酸浓度和液固比对还原糖得率的影响,R值越大说明影响越大,因此影响因素为温度 > 液固比 > 时间 > 硫酸浓度,即 A > D > B > C。因此,可以得出温度对还原糖得率的影响最大,硫酸浓度最小,其他影响因素次之。k值的大小可以说明各因素对还原糖得率的影响程度,k值越大,说明还原糖得率越高,综合比较各水平 k值的大小可以得出秸秆水解的最优水平为 $A_2B_2C_2D_1$,最佳工艺条件为:温度为 $50 \, ^{\circ} ^{\circ}$,时间为 $10 \, ^{\circ}$ min,硫酸浓度为 72%,液固比为 $10 \, ^{\circ}$ mL: $1 \, ^{\circ}$ g.

3 结论

采用玉米秸秆为原料,选用碱法进行原料预处理,考察了预处理工艺中单因素温度、时间、粒度对纤维素、半纤维素和木质素含量以及脱除率的影响,结果表明,当温度为 $100\,^{\circ}\mathrm{C}$ 、时间为 $4\,\mathrm{h}$ 、氢氧化钠浓度为 2%、粒度为 $16\,\mathrm{E}$,半纤维素、木质素的脱除率分别达 90.6% 和 86.4%,此时纤维素含量可高达 53%。在浓硫酸水解工艺中,通过正交法得到最优水解工艺条件:温度为 $50\,^{\circ}\mathrm{C}$,时间为 $10\,\mathrm{min}$,硫酸浓度为 72%,液固比为 $10\,\mathrm{mL}$: $1\,\mathrm{g}$ 。

参考文献:

- [1]王许涛,周恒涛,张百良. 秸秆生产乙醇的预处理方法分析[J]. 安徽农业科学,2007,35(22):6883-6884,6886.
- [2]赵 岩. 秸秆制乙醇的超临界亚临界组合预处理与水解研究 [D]. 北京:清华大学,2009.
- [3]张 亮,伍小兵,翟井振. 玉米秸秆发酵生产燃料乙醇的研究综述[J]. 安徽农业科学,2007,35(11):3365-3366.
- [4]孙万里. 稻草秸秆的预处理及生产乙醇的研究[D]. 无锡:江南大学.2010.
- [5]陈 明. 利用玉米秸秆制取燃料乙醇的关键技术研究[D]. 杭州:浙江大学,2007.
- [6]王联结, 陈建华. 木质纤维原料预处理技术[J]. 现代化工, 2007, 27(6):66-70.
- [7]刘书钗. 制浆造纸分析与检测[M]. 北京:化学工业出版社, 2004:28-31.
- [8]王林风,程远超. 硝酸乙醇法测定纤维素含量[J]. 化学研究, 2011,22(4):52-55,71.
- [9]熊素敏,左秀凤,朱永义. 稻壳中纤维素、半纤维素和木质素的测定[J]. 粮食与饲料工业,2005(8);40-41.
- [10]麻越佳. 稻壳制备燃料乙醇及综合利用[D]. 长春:吉林大学,2011.
- [11]潘晓辉. 微波预处理玉米秸秆的工艺研究[D]. 哈尔滨:哈尔滨工业大学,2007:6-10.