赵 艳, 张晓波, 阮云泽, 等. 海南省不同地区香蕉根结线虫病的种类及发生情况[J]. 江苏农业科学, 2015, 43(2):128-130. doi:10.15889/i.issn.1002-1302.2015.02.040

海南省不同地区香蕉根结线虫病的种类及发生情况

赵 艳1,2,张晓波1,2,阮云泽1,2,王雅楠2

(1. 海南省热带生物资源可持续利用重点实验室,海南海口570228; 2. 海南大学农学院,海南海口570228)

摘要:从海南省 4 个县(市)的香蕉基地采集的香蕉根结线虫病的 32 份土样和 87 份根样中鉴定出根结线虫属 (Meloidogyne spp.)、肾形线虫属(Rotylenchulus spp.)、短体线虫属(Pratylenchus spp.)、茎线虫属(Ditylenchus spp.)、螺旋线虫属(Helicotylenchus spp.)、矮化线虫属(Tylenchorhynchus spp.)、真滑刃线虫属(Aphelenchu, spp.)7 个属。其中根结线虫属和肾形线虫属分布较广,种群数量也较高,在各采样区中均有发生,是目前海南省香蕉生产中面临的最主要的病原线虫。

关键词:香蕉;根结线虫;海南地区;优势种群;根结线虫属;肾形线虫属

中图分类号: S436.68+1 文献标志码: A 文章编号:1002-1302(2015)02-0128-02

根结线虫(Meloidogyne spp.)是一类在植物上危害极为严重的寄生线虫,是植物线虫中种类最多、分布最广和危害最严重的类群之一。海南省作为我国香蕉主产区,香蕉栽培面积不断扩大,取得了显著的经济效益^[1-2]。近年来,由于气候条件及栽培管理等的影响,海南省香蕉根结线虫病的发生越来越严重,在许多国家,由线虫危害造成的香蕉产量损失达30%~60%^[3-4]。目前,由于许多种植户对该线虫病原缺乏了解,盲目利用化学药剂和抗病品种防治根结线虫病原,不仅效果不理想,而且易造成土壤污染。因此,首先对根结线虫进行准确的鉴定成为防治该病的前提条件,本研究主要对海南省不同地区香蕉根结线虫进行初步鉴定,以期为该病害的有效防治提供理论依据。

1 材料与方法

1.1 采样地点

土壤采集于海南省儋州(木棠镇)、临高(红华农场)、澄 迈(黄竹、福山、老城、金江、红光农场)及乐东县(万钟基地)4 个香蕉种植产区,主要位于海南省的北部和南部地区。

1.2 植株及土壤样品的采集

在上述不同试验区分别选取种植年限为1、2、3、4年的香蕉园,共采集32份土样和87份根样。取样时每块地按5点采样法随机选定5点,每点5株,分别挖取具有根结的植株根系,土样取几个取样点表土下5~20cm处植株根围的土壤,充分混匀后取出约500g土,放入大塑料袋中,再放入标签注明采集时间、地点和采集人,封口后带回实验室及时分离。

1.3 症状观察

对采集的根样及时进行症状观察。根据根结分级标准

(表1)计算根结指数[5]:

根结指数 = $\frac{\sum$ 各级病级数×样本数 \times 100%。

表 1 香蕉根结线虫病评价分级标准

病级	根结情况
0 级	根系健康完整,无侵染
1级	严格检查才能发现极少数的小根结
2 级	根结像1级大小,但数量稍多,较易见
3 级	大量小结瘿,有时长在一起,根功能受损不严重
4 级	大量小根结,有一些大根结,大多数根仍具功能
5 级	25%根系严重根结和丧失功能
6 级	50%根系严重根结和丧失功能
7级	75%根系严重根结和丧失能力
8 级	无健康根,植株营养中断
9 级	根系全部根结和腐烂,植株垂死

1.4 根结线虫的分离

将根样用筛蔗糖离心法分离^[6],将有明显根结的植株用自来水冲洗干净,用1%过氧化氢表面消毒2 min,再用无菌水冲洗2次,将根系剪成1~2 cm 长度的根段并加入适量的无菌水,用豆浆机打碎5 s后,倒入双层湿筛(160 和 400 目)中并用无菌水冲洗3~5次,收集下层筛的2 龄幼虫,并用38%蔗糖溶液离心后获得大量根结线虫,在解剖镜下用移液器吸取一定数量的线虫备用。土样利用贝尔曼漏斗法收集大量2 龄幼虫^[7]。

1.5 线虫计数

将从根系及土壤样品中分离得到的根结线虫制成悬浮液,并置于底部画有刻度线的计数皿(直径为6 cm)中,在光学解剖镜下观察计数。

1.6 杀死、固定及鉴定

收集所分离的 2 龄幼虫,65 ℃恒温热杀死后用等量 4% 甲醛溶液固定液进行固定,最后制成临时玻片,在高级显微镜下观察线虫形态特征,参考相关资料鉴定线虫种类^[8-11]。

1.7 数据分析

数据处理和统计分析采用 Excel 2003 软件完成。

收稿日期:2014-04-14

基金项目:海南大学青年基金(编号:qnjj1201);海南省自然科学基金(编号:312060)。

作者简介:赵 艳(1981—),女,山西太谷人,博士,讲师,主要从事微生物相关研究。E-mail;yanbo315@126.com。

通信作者: 张晓波, 博士, 副教授, 研究方向为草坪管理相关研究。 E-mail; 23065041@qq. com。

2 结果与分析

2.1 香蕉根结症状

海南省儋州、临高、澄迈、乐东地区不同种植年限香蕉园 共采集到87份根样进行病症观察,香蕉根结指数见表2,可 以看出,随着年限的增加,不同地区香蕉根结指数逐渐增加, 其中临高和澄迈地区香蕉根结指数较高,说明根结线虫危害 较严重,而乐东地区香蕉根结线虫危害比较轻。

表 2 采样点香蕉根结线虫根结危害的程度

样品采样点		不同年限的	的根结指数	
件吅木件点	1年	2年	3年	4年
儋州地区	42.6	48.0	69.3	72.5
临高地区	53.4	75.8	81.4	97.2
澄迈地区	41.4	52.8	71.8	92.5
乐东地区	15.5	21.1	42.0	61.2
	15.5	21.1	42.0	61.1

2.2 线虫发生种类及种群数量

从海南省儋州、临高、澄迈、乐东地区采集的32份土样和

87 份根样中共分离得到 7 个属的寄生线虫,经鉴定分别为根结线虫属(Meloidogyne spp.)、肾形线虫属(Rotylenchulus spp.)、短体线虫属(Pratylenchus spp.)、茎线虫属(Ditylenchus spp.)、螺旋线虫属(Helicotylenchus spp.)、矮化线虫属(Tylenchorhynchus spp.)、真滑刃线虫属(Aphelenchus spp.)。从表 3 可以看出,根结线虫属、肾形线虫属分布较广,在所有调查的县(市)中均有分布,检出率分别为87.5%、93.8%;而螺旋线虫属、矮化线虫属、真滑刃线虫属的检出率比较低,分别为12.5%、9.3%、21.8%。

从表 4 种群数量来看,随着年限的增加,线虫数量也不断增加,其中根结线虫属、肾形线虫属最高,第 1 年分别占总虫数的 42.8%、39.6%,第 2 年分别占总虫数的 33.8%、43.0%,第 3 年分别占总虫数的 45.9%、36.7%,第 4 年分别占总虫数的 44.8、43.1%;从表 3、表 4 中还可以看出,有的线虫分布较广,但是种群数量较低,如螺旋线虫属分布较广,占总样本数的 56.25%,但种群数量比较低,第 1 年至第 4 年分别占总虫数的 1.6%、2.1%、2.3%、0.9%。

表 3 海南省不同地区香蕉寄生线虫的种类及分布

鉴定种类	检出样本数 (个)	检出率 (%)	样本采集地点
根结线虫属	28	87.5	儋州(木棠镇)、临高(红华农场)、澄迈(黄竹、福山、老城、金江、红光农场)、乐东县(万钟基地)
肾形线虫属	30	93.8	儋州(木棠镇)、临高(红华农场)、澄迈(黄竹、福山、老城、金江、红光农场)、乐东县(万钟基地)
短体线虫属	12	37.5	临高(红华农场)、澄迈(老城、金江、红光农场)、乐东县(万钟基地)
茎线虫属	10	31.3	儋州(木棠镇)、临高(红华农场)、澄迈(黄竹、红光农场)
螺旋线虫属	18	12.5	临高(红华农场)、澄迈(黄竹、福山、老城、金江、红光农场)、乐东县(万钟基地)
矮化线虫属	3	9.3	临高(红华农场)
真滑刃线虫属	7	21.8	临高(红华农场)、澄迈(福山)

表 4 海南省不同年限香蕉园线虫主要种群发生数量比较

鉴定种类	第1年		第2年		第3年		第4年	
	100 g 土中种 群数(条)	占总虫数的 百分比(%)						
根结线虫属	2 241	42.8	2 979	33.8	7 869	45.9	9 228	44.8
肾形线虫属	2 075	39.6	3 789	43.0	6 281	36.7	8 866	43.1
短体线虫属	530	10.1	928	10.5	989	5.8	1 147	5.6
茎线虫属	144	2.7	469	5.3	898	5.2	669	3.3
螺旋线虫属	85	1.6	187	2.1	389	2.3	195	0.9
矮化线虫属	97	1.9	258	2.9	396	2.3	180	0.9
真滑刃线虫属	65	1.2	199	2.3	308	1.8	299	1.5
线虫总数	5 237	100.0	8 809	100.0	17 130	100.0	20 584	100.0

3 结论与讨论

由本研究对海南省儋州、临高、澄迈、乐东地区不同年限香蕉基地线虫的调查和鉴定结果可知,危害香蕉的主要线虫为根结线虫属、肾形线虫属、短体线虫属、茎线虫属、螺旋线虫属、矮化线虫属、真滑刃线虫属,其中根结线虫属、肾形线虫属为优势种群,分布较广泛。鄢小宁等在广东、广西2省香蕉上调查到的主要线虫种类为根结线虫属、肾状线虫属、螺旋线虫属、滑刃线虫属、丝尾垫刃线虫属等,其中根结线虫属比肾形线虫属的检出率高^[4];黎少梅在广东、海南2省调查到的香蕉线虫主要种类为肾状线虫属、根结线虫属、螺旋线虫属和根腐线虫属(*Pratylenchus* spp.),其中肾形线虫属的检出率比根结

线虫属高^[11],与本试验研究结果一致,但是本试验未鉴定出根腐线虫属,增加了短体线虫属、茎线虫属、矮化线虫属、真滑刃线虫属,说明调查结果的差异可能与调查时间、寄主数量及采集地有关,而且近年来寄生线虫种类可能也发生了变化,线虫种类也在不断增加;本调查中没有发现有穿孔线虫属。

据有关文献报道,根结线虫属、肾形线虫属、螺旋线虫属对香蕉的危害较严重^[13-15]。螺旋线虫属容易引起香蕉根部细胞坏死、衰萎和机能的变异,最终能导致整株香蕉衰退;根结线虫属主要侵染香蕉的根部,形成根结后影响香蕉根系吸收,容易造成产量减少;肾形线虫属主要侵染香蕉,进而引起侵染点附近内皮层细胞壁加厚,容易断裂;矮化线虫和短体线虫属目前危害较轻,但仍需要注意防治。

谢美华,李 霖,李雪玲,等. 芒萁叶斑病病原菌分离鉴定和生物学特性[J]. 江苏农业科学,2015,43(2):130-133. doi:10.15889/i.issn.1002-1302,2015.02.041

芒萁叶斑病病原菌分离鉴定和生物学特性

谢美华1,李霖2,李雪玲1,杨海艳1,王振吉1,范树国1

(1. 楚雄师范学院化学与生命科学系/云南省高校应用生物学重点实验室,云南楚雄 675000;

2. 楚雄医药高等专科学校信息中心,云南楚雄 675000)

摘要:对芒萁叶斑病进行病原鉴定,研究病原菌生物学特性和杀菌剂对其抑制作用。结果表明,该病原菌为拟盘多毛孢属真菌,最适宜生长的碳源为乳糖、氮源为硝酸钠。菌丝适宜生长的温度范围较窄,只能在 $15 \sim 30$ ℃范围内生长,28 ℃ 菌丝生长最好,分生孢子在 32 ℃时萌发率最高;适宜菌丝和分生孢子生长和萌发的 pH 值范围均较广,适宜菌丝生长的 pH 值为 4.0,适宜分生孢子萌发的 pH 值为 6.0;光周期对菌落生长的影响不大,光照有利于分子孢子的萌发。供试杀菌剂中以百菌清抑菌效果最好。

关键词:芒萁;叶斑病;病原鉴定;生物学特性

中图分类号: S435.67 文献标志码: A 文章编号:1002-1302(2015)02-0130-04

芒萁[Dicranopteris dichotomya (Thunb.) Bernh.]是多年生常绿蕨类植物,广泛分布于中国长江以南各省区、朝鲜南部及日本,是酸性土壤指示植物,有药用价值^[1]。在自然状态下,芒萁的种间竞争力极强,芒萁的化感物质释放到周围环境,抑制并排挤其他植物的生长发育,从而形成单优势的"纯植丛"群落^[2]。近年来,关于芒萁的研究主要集中在生理生

收稿日期:2014-02-25

基金项目:云南省应用基础计划(编号:2011FZ186);云南省高校科技创新团队支持计划;楚雄师范学院科研基金(编号:10YJYB02); 楚雄师范学院大学生创新创业训练计划(编号:2013exey04)。

作者简介:谢美华(1981—),女,云南楚雄人,硕士,实验师,从事植物病理学真菌病害研究。E-mail;xiemeihua@cxtc.edu.cn。

通信作者:杨海艳,博士,高级实验师,从事植物病理学真菌病害研究。Tel:(0878)3100784;E-mail:haiyanyang@cxtc.edu.cn。

目前,香蕉根结线虫病已经成为海南省香蕉种植地区的重要病害,由于近年来香蕉长期种植,复种率高,病原线虫不断增加,导致根结线虫病发生越来越严重,造成香蕉产量降低。为了有效和可持续控制香蕉根结线虫病,一方面要开展对香蕉根结线虫种类的鉴定工作,明确其种群并制定相应的防治措施;另一方面要加强微生物防治技术研究。

参考文献:

- [1]黄秉智. 香蕉优质高产栽培[M]. 北京:金盾出版社,2008:1-8.
- [2]李丰年,曾惜冰,黄秉智. 香蕉栽培技术[M]. 广州:广东科技出版社,1999;1-10.
- [3]李一农,李芳荣,罗海燕,等. 外来入侵生物香蕉穿孔线虫管理对策[J]. 植物保护,2006,32(6):119-121.
- [4] 鄢小宁, 郑服丛, 林茂松. 两广地区香蕉根际寄生线虫的调查与鉴定[J]. 热带农业科学, 2005, 25(6):4-8.
- [5]张绍升. 植物线虫病害诊断与治理[M]. 福州:福建科学技术出版社,1999:105.
- [6]陈立杰,王 旭,段玉玺,等. 蔗糖离心法分离土壤线虫的最佳条

化指标的测定^[3-4]、化感作用^[5-9]、多糖和黄酮提取^[9-11]等方面,但对芒萁叶斑病的研究目前还未见报道。本研究选取芒萁叶斑病病叶,对该病害进行分离鉴定和生物学特性研究,以期为芒萁叶斑病控制和防治方面提供理论基础。

1 材料与方法

1.1 病原菌的分离

自楚雄彝族自治州西山公园采集到9组芒萁叶斑病的病叶进行培养,共分离到3个菌株,其中,1株是交链孢属菌株,1株是黑曲霉属菌株,1株是拟盘多毛孢属菌株。将纯培养得到的3个菌株孢子悬浮液接种到健康的芒萁叶片上,每组设24个重复。10 d后,接种了交链孢属和黑曲霉属的植株依然健康,而接种了拟盘多毛孢属菌株的植株出现了叶斑病。从接种发病的芒萁植株上再分离到的纯培养,性状与接种物相同。从

件筛选[J]. 沈阳农业大学学报,2007,38(6):849-851.

- [7]方中达. 植病研究方法[M]. 3 版. 北京: 中国农业出版社,1998: 306-311.
- [8] Eisenback J D, Hirschmann H, Sasser J N, et al. 四种最常见根结线 虫分类指南[M]. 杨宝君, 译. 昆明:云南人民出版社,1986.
- [9] 杨宝君. 十五种根结线虫病害的病原鉴定[J]. 植物病理学报, 1984,4(2):107-111.
- [10] 思彬彬, 张学娟, 张靠稳. 不同寄主上南方根结线虫的 ISSR-PCR 鉴别[J]. 江苏农业科学,2014,42(3):35-36.
- [11] 刘维志. 植物线虫志[M]. 北京:中国农业出版社,2004: 39-655.
- [12] 黎少梅. 广东海南两省与香蕉有关的植物寄生线虫[J]. 热带作物科技,1991(1):43-45.
- [13] 黎少梅,许克林,黎春生,等. 广东香蕉肾状线虫病的分布为害及病原鉴定[J]. 华南农业大学学报,1987,8(4):9-14.
- [14] 李夷波,王寿华,李春敏,等. 云南河口香蕉黄化束顶病研究 I. 症状与发病规律[J]. 植物病理学报,1995,25(2):143-147.
- [15]李迅东,翟留香,李 芹. 云南香蕉根际线虫种群动态的研究 [J]. 华南农业大学学报,1998,19(4):32-35.