孙 健,梁茂法,钮福祥,等. 真空油炸花生加工工艺及感官特性[J]. 江苏农业科学,2015,43(4):262-264. doi:10.15889/j. issn. 1002-1302.2015.04.095

真空油炸花生加工工艺及感官特性

孙 健¹,梁茂法²,钮福祥¹,梁华章²,徐 飞¹,岳瑞雪¹,张 毅¹,朱 红¹ (1.江苏徐淮地区徐州农业科学研究所,江苏徐州 221131; 2.江苏省徐州奎峰食品有限公司,江苏睢宁 221216)

摘要:以不同品种花生为材料,探讨了真空油炸花生的加工工艺及对花生制品物理特性、感官特性的影响。结果表明,花生经浸泡、腌渍、蒸煮、冷冻处理后,在真空度 - 0.092 ~ 0.100 MPa、110 ℃条件下制备的产品感官品质最佳。与常压油炸相比,真空油炸花生制品具有容重小、得率高、商品率高、色泽浅、口感酥脆等优点。不同品种花生真空油炸制品的感官特性差异较大,其中四粒红、花育19表现较好。

关键词:花生:真空油炸:加工工艺:感官特性

中图分类号: TS201.1 文献标志码: A 文章编号:1002-1302(2015)04-0262-02

花生是我国重要的油料作物、经济作物,具有很高的营养价值,果仁脂肪含量为 38% ~60%,多为不饱和脂肪酸,蛋白质含量为 24% ~36%,含有 8 种人体必需氨基酸^[1]。我国所产花生中 55% 用于制油,30% 用于食用,15% 用于出口、做种等,在花生食品研发方面与发达国家差距很大^[2]。真空油炸技术始于 20 世纪 60 年代末,它是将真空技术与油炸脱水作用有机结合在一起,在负压、低温状态下以热油为传热媒介,使果蔬组织内部的水分急剧蒸发,从而形成疏松多孔的结构,该技术可以较好地保留果蔬中的营养成分以及果蔬天然色泽、风味^[3-4]。真空油炸技术在果蔬上应用广泛^[5-7],但有关真空油炸花生制品的开发还未见相关报道。本研究考察了不同前处理工艺及真空油炸温度对花生制品物理、感官特性的影响,以期为新型油炸花生食品开发提供依据。

1 材料与方法

1.1 材料

花育 19、濮花 28、黑花生、白花生、紫花生、四粒红、二粒红等 7 个花生品种均于 2013 年 9 月收获自徐州奎峰食品有限公司种植基地。不同花生品种产量及性状见表 1。棕榈油、食盐等均为食品级。

表 1 供试花生品种性状

品种	荚果产量 (kg/hm²)	荚果形状	种仁形状	种皮颜色
花育 19	3 600	普通	椭圆	粉红
濮花 28	3 450	普通	椭圆	粉红
黑花生	2 100	普通	椭圆	黑
白花生	1 800	普通	椭圆	白
紫花生	3 150	普通	椭圆	紫
四粒红	2 250	普通	椭圆	红
二粒红	3 375	茧形	员	浅红

收稿日期:2014-05-17

基金项目:江苏省徐州市科技项目(编号:XF12C030)。

作者简介:孙 健(1979—),男,江苏睢宁人,硕士,助理研究员,研究 方向为食品加工。E-mail:sjsg9902@126.com。

1.2 仪器

燃油蒸汽锅炉(扬州斯大锅炉有限公司),真空油炸机(秦皇岛通海科技发展有限公司),FB1100 封盖机(廊坊市安次区长兴机械厂),BD719H 电冰柜(海尔集团),电子天平(上海友声衡器有限公司),电磁炉(美的集团)。

1.3 方法

- 1.3.1 真空油炸花生制备基本工艺流程 花生经脱壳、挑拣、清洗后,按1g:3 mL 料水比加水浸泡24~48 h,加2% NaCl 腌渍,而后常压蒸煮20 min,冷却至室温后置于-20 $^{\circ}$ $^{\circ}$
- 1.3.2 常压油炸花生工艺流程 花生经脱壳、挑拣、清洗后,在常压 $180 \sim 200$ ℃条件下油炸 $5 \sim 10$ min,经脱油、包装即为成品。
- 1.3.3 浸泡处理工艺对真空油炸花生感官特性的影响 取500 g 花育 19 花生,按 1 g:3 mL 料水比加水浸泡 48 h,常压蒸煮 20 min,冷却后置于 -20 $^{\circ}$ $^{\circ}$
- 1.3.4 蒸煮处理工艺对真空油炸花生感官特性的影响 取500 g 花育 19 花生,按 1 g:3 mL 料水比加水浸泡 48 h,常压蒸煮 20 min,冷却后置于 -20 ℃冷冻 72 h,解冻后在 -0.092 ~ -0.100 MPa、110 ℃条件下油炸 35 min,对真空油炸花生制品的感官特性进行评价。同时以未蒸煮处理作为对照。
- 1.3.5 冷冻处理工艺对真空油炸花生感官特性的影响 取500g 花育19花生,按1g:3 mL料水比加水浸泡48h,常压蒸煮20 min,经冷却后置于 20 ℃冷冻72h,解冻后在 -0.092~-0.100 MPa、110℃条件下油炸35 min,对真空油炸花生制品的感官特性进行评价。同时以未冷冻处理作为对照。
- 1.3.6 腌制方式对真空油炸花生感官特性的影响 取 500 g 花育 19 花生,按 1 g: 3 mL 料水比加水浸泡 48 h,常压蒸煮 20 min,经冷却后置于 -20 ℃冷冻 72 h,解冻后在 -0.092 ~ -0.100 MPa、110 ℃条件下油炸 35 min,考察前腌渍(蒸煮前加 2% NaCl 腌渍)、后腌渍(蒸煮后加 2% NaCl 腌渍)对真空

油炸花生制品感官特性的影响。

1.3.7 油炸温度对真空油炸花生感官特性的影响 取 500 g 花育 19 花生,按 1 g: 3 mL 料水比加水浸泡 48 h,常压蒸煮 20 min,经冷却后置于 -20 ℃冷冻 72 h,解冻后在 -0.092 ~ -0.100 MPa 条件下油炸 35 min,考察 90、110 ℃油炸温度对真空油炸花生制品感官特性的影响。

1.3.8 真空油炸花生制品得率 真空油炸花生制品得率计 算公式如下:

花生制品得率 = 花生成品质量/花生原料质量×100%。(1)1.3.9 真空油炸花生感官评价方法 从色泽、酥脆度、香味、综合评价等方面对真空油炸花生进行感官评价,除色泽外,其他指标满分均为5分。评价标准为:酥脆度:不酥脆(1分),微酥脆(2分),中等(3分),较酥脆(4分),酥脆(5分);香味:不香(1分),微香(2分),中等(3分),较香(4分),香(5分);综合评价:差(1分),较差(2分),中等(3分),较好(4分),好(5分)。

2 结果与分析

2.1 不同加工工艺对真空油炸花生物理特性、感官特性的 影响

真空油炸花生主要加工工艺流程包括浸泡、蒸煮、冷冻、腌渍方式、油炸温度等。由表 2 可知, 浸泡处理下花生加工成品容重由 604 g/L下降到 464 g/L, 明显提高了真空油炸花生制品的商品率。除腌渍方式外,各处理对真空油炸花生得率影响均较大。当真空油炸温度从 90 ℃升高至 110 ℃时, 花生制品得率由 93.9% 升高至 105.0%。

表 2 不同加工工艺对真空油炸花生成品容重、得率的影响

加工工艺	容重 (g/L)	得率 (%)
未浸泡	604	93.8
浸泡	464	100.4
未蒸煮	464	100.4
蒸煮	457	97.9
不冷冻	457	97.9
冷冻	476	105.0
前腌渍	461	107.1
后腌渍	463	108.1
90 ℃	406	93.9
110 ℃	476	105.0

由表 3 可知,经浸泡处理后,花生种皮颜色由红色变为浅红色,成品酥脆度提高,综合品质较好。蒸煮处理对花生制品的酥脆度、香味、综合品质影响不大。冷冻处理对真空油炸花生制品品质的影响主要体现在酥脆度方面,冷冻处理导致花生组织内部形成大量冰晶体,经真空油炸后形成多孔结构,从而获得酥脆度较高的产品。腌渍方式对花生制品的感官特性影响也不大,与前腌渍相比,后腌渍处理过的花生制品香味变淡、口感发面。油炸温度对真空油炸花生制品的感官影响较大,当油炸温度从 90 ℃升高到 110 ℃时,花生制品酥脆度有所提高,香味浓郁,综合品质较好。综合考虑花生物理特性、感官特性,真空油炸花生的理想工艺为:花生原料经过浸泡、腌渍、蒸煮、冷冻处理后,选择 110 ℃油炸温度及 -0.092 ~ -0.100 MP 真空度,在此条件下制备的产品品质最佳。

表 3 加工工艺对真空油炸花生感官特性的影响

4n T T #	色泽	感观评价			
加工工艺		酥脆度	香味	综合评价	
未浸泡	红	3.5	3.2	3.2	
浸泡	浅红	4.2	3.5	4.0	
未蒸煮	浅红	3.8	3.8	4.0	
蒸煮	浅红	4.0	3.2	4.2	
未冷冻	浅红	3.6	3.2	3.8	
冷冻	浅红	4.5	3.5	4.5	
前腌渍	浅红	3.8	3.8	4.2	
后腌渍	浅红	4.2	3.0	4.0	
90 ℃	浅红	4.0	2.8	3.6	
110 ℃	浅红	4.2	3.5	4.5	

2.2 真空油炸与常压油炸花生感官特性比较

真空油炸技术可以最大限度地保留原料的风味、营养成分,能有效防止食用油脂氧化变质^[3,8]。常压油炸的工作温度一般在 180~250 ℃,经过高温油炸的食品丧失了营养价值,颜色变深,含油量增加^[7],甚至产生有毒物质^[9]。由表 4可以看出,与真空油炸花生相比,常压油炸花生除香味较好外,容重、得率、色泽、酥脆度、综合品质等指标均较差;真空油炸花生具有容重小、得率高、商品率高、色泽浅、口感酥脆、营养损失少等优点。

表 4 真空油炸与常压油炸花生感官评价比较

油炸方式				感官评价			
	(g/L)	(%)	色泽	酥脆度	香味	综合评价	
真空油炸	476	105	浅红	4.2	3.0	4.2	
常压油炸	562	95	深红	2.8	3.5	3.0	

2.3 不同品种花生真空油炸制品差异

由表 5 可知,不同品种花生真空油炸制品得率变幅较大,为 87.3%~107.1%,容重的变幅较小,平均值为 373 g/L。在感官特性方面,不同品种之间差异较大,真空油炸花生制品除香味得分普遍下降外,多数品种的酥脆度、综合品质指标均较好,其中以四粒红、花育 19 感官评价最优。由此可见,四粒红、花育 19 适宜用作真空油炸花生的原材料。

表 5 不同花生品种真空油炸制品差异

□ 1 4h	容重	容重 得率		感官评价			
品种	(g/L)	(%)	色泽	酥脆度	香味	综合评价	
花育 19	461	107.1	橘黄色	4.2	3.0	4.2	
濮花 28	363	93.5	黄褐色	4.0	3.5	4.0	
黑花生	335	92.1	黑色	3.5	1.0	2.8	
紫花生	362	93.7	紫色	3.2	2.0	3.2	
白花生	396	92.9	白色	2.5	3.0	3.0	
二粒红	359	91.9	深红色	4.0	1.5	3.5	
四粒红	334	87.3	浅红色	4.0	3.5	4.5	
均值	373	94.1		3.6	2.5	3.6	
极差	127	19.8		1.7	2.5	1.7	

3 结论

本研究表明,在真空油炸花生加工过程中,花生经浸泡、腌渍、蒸煮、冷冻处理后,在真空度 - 0.092 ~ - 0.100 MPa、110 ℃条件下制备的产品品质最佳。与常压油炸花生相比,真空油炸花生具有容重小、得率高、商品率高、色泽浅、口感酥脆等优点。不同品种花生真空油炸制品物理特性、感官特性

司 超,姚晓芹,贺学礼,等. 菊花中绿原酸超声提取工艺与测定方法研究[J]. 江苏农业科学,2015,43(4):264-266. doi:10.15889/i.issn.1002-1302.2015.04.096

菊花中绿原酸超声提取工艺与测定方法研究

司 超,姚晓芹,贺学礼,楚建周(河北大学生命科学学院,河北保定071002)

摘要:采用正交试验,考察提取显色条件对药用菊花中绿原酸提取与测定的影响。结果表明,菊花中绿原酸提取测定最优方法为用80%甲醇作提取剂,超声提取30 min,加0.02 mol/L FeCl₃0.5 mL 进行显色反应,静置30 min 后在分光光度计755 nm 波长下测定吸光度,该方法简单、准确、灵敏、重复性强,可用于菊花中绿原酸的提取测定。

关键词:菊花:绿原酸:超声提取:分光光度法

中图分类号: R284.2 文献标志码: A 文章编号:1002-1302(2015)04-0264-03

菊花为多年生菊科草本植物,以头状花序入药,是我国传统中药,主要功效有散风清热、平肝明目、解毒、降压等,主治风热感冒、头痛眩晕、目赤肿痛、明目昏花等症^[1]。绿原酸是菊花主要的活性成分,它是植物体在有氧呼吸过程中合成的一种苯丙素类物质,具有清除自由基、抗菌消炎、抗病毒、降糖、降脂、保肝利胆等多种功效^[2-3]。目前,提取药用植物中绿原酸采用的方法主要有超高压提取法、热回流法、溶剂浸提法、酶解法、微波辅助萃取法、超声提取法等^[4-7]。绿原酸含量测定方法主要有高效液相色谱法、高效毛细管电泳法、紫外分光光度法等^[8-10]。有学者利用可见分光光度法测定绿原酸含量,该方法主要是利用绿原酸能与 FeCl, 进行特殊的显色反应来测定植物中绿原酸含量,具有原理简单、仪器常见、成本低等优点^[11]。笔者在前人研究的基础上对超声提取、显色条件进行深入研究,进一步完善采用可见分光光度法快速测定植物中绿原酸含量的方法。

收稿日期:2014-05-09

基金项目:国家自然科学基金(编号:31300321);河北省自然科学基金(编号:C2012201080);河北大学大学生科技创新项目(编号:2013080)。

作者简介:司 超(1985—),女,山东滕州人,硕士研究生,主要从事药用植物次生代谢研究。E-mail;sisi19851204@163.com。

通信作者:姚晓芹,博士,副教授,主要从事药用植物次生代谢、植物 逆境生理研究。E-mail;yaoxiao301@126.com。

差异明显,得率变幅较大,容重变幅较小,酥脆度、综合品质等感官指标表现较好。四粒红、花育 19 可以作为真空油炸花生加工的专用品种。

参考文献:

- [1]王 丽,王 强,刘红芝,等. 花生加工特性与品质评价研究进展 [J]. 中国粮油学报,2011,26(10):122-128.
- [2] 万书波. 花生品质学[M]. 北京:中国农业科学技术出版社,2005.
- [3]张炳文,郝征红,杜红霞. 低温真空油炸技术综述[J]. 粮油食品 科技,1997(5):12-13.

1 材料与方法

1.1 仪器与试剂

主要仪器:722 型可见分光光度计(上海舜宇恒平科学仪器有限公司),240W PS - 40A 型数控超声波清洗器(深圳市康洁洗净电器有限公司)。主要试剂:标准绿原酸(纯度95%,阿拉丁试剂上海有限公司)、FeCl。溶液、甲醇、乙醇。笔者所在实验室种植的怀菊,将菊花头状花序在105℃下杀青30 min,55~60℃下烘干至恒质量,粉碎、过筛,混匀备用。1.2 超声波提取条件优化

- 1.2.1 提取溶剂 用 60% 甲醇、60% 乙醇进行提取溶剂试验,比较不同提取剂对绿原酸提取效果的影响。取 0.3 g 干样,分别加入 15 mL 60% 甲醇、15 mL 60% 乙醇溶液,超声提取 30 min,过滤后用提取溶剂定容至 25 mL 刻度管内;取1 mL上述溶液加 4 mL 提取溶剂,置于 10 mL 刻度管中,加 0.5 mL 0.02 mol/L FeCl₃ 溶液(分别用 60% 甲醇、60% 乙醇配制)振荡摇匀后静置 60 min,用 722 型分光光度计于 755 nm 波长下进行比色,确定最佳提取溶剂。
- 1.2.2 提取容器 选择等容积的烧杯、锥形瓶、塑料瓶、试管进行试验,提取溶剂为60%甲醇溶液,提取方法、测定步骤同"1.2.1"节,比较提取容器对绿原酸提取效果的影响。
- 1.2.3 浸泡时间 用甲醇提取液分别浸泡样品 0、3、6、12、18、24 h 后进行超声提取,测定方法同"1.2.1"节,比较浸泡时间对绿原酸提取效果的影响。
- [4] 刘春梅,李艳东,王宗礼. 果蔬脆片真空低温油炸技术及设备应用研究[J]. 农机化研究,2010,32(9):209-211,226.

- [5] 钮福祥,张爱君,朱 磊,等. 真空低温油炸甘薯脆片的研制[J]. 江苏农业科学,2004(2):82-84.
- [6] 赵凤敏, 杨延辰, 王 远, 等. 真空油炸马铃薯片加工工艺的研究 [J]. 农产品加工·学刊, 2005 (12): 33 34, 37.
- [7] 钮福祥,徐 飞,孙 健,等. 真空低温油炸对果蔬营养成分的影响[J]. 中国食物与营养,2011,17(10):65-67.
- [8]周汉林. 果蔬脆片和连续真空油炸设备[J]. 广东农机,1996 (1):23-24.
- [9] 张俊艳. 真空油炸技术在食品加工中的应用[J]. 食品研究与开发,2013,34(10):129-132.