林春英,李希来,金惠瑛,等,黄河上游河曲地区湿地植物多样性及其湿地退化的气候背景分析[J],江苏农业科学,2015.43(5):348-356, doi · 10, 15889/i, issn. 1002 - 1302, 2015, 05, 113

黄河上游河曲地区湿地植物多样性 及其湿地退化的气候背景分析

林春英^{1,2}, 李希来¹, 金惠瑛², 周万福³, 王黎俊², Jay Gao⁴, 马玉岩², 韩辉邦², 刘珍花²

- (1. 青海大学, 青海两宁 810016: 2. 青海省人工影响天气办公室, 青海两宁 810001:
- 3. 青海省气象科学研究所, 青海两宁 810001:4. 奥克兰大学环境学院, 新两兰奥克兰)

摘要:采用 Jay Gao 的分类体系对黄河上游河曲地区河南、泽库、玛曲和若尔盖 4 个具不同湿地类型和植物群落特 征方面进行物种统计,结果显示:黄河上游河曲地区湿地植被组成中原生植物减少,菊科等杂类草增多,河漫滩湿地 (F)物种多样性较多,湖泊湿地(L)相对较少:利用1994—2012年黄河上游河曲地区4个县年平均气温、年降水量、年 蒸发量、年日照时数和年平均地温等资料、初步探讨黄河上游河曲地区近19年来湿地变化的自然原因。

关键词:黄河:高原湿地:湿地类型:湿地退化:物种多样性:气候

文章编号:1002-1302(2015)05-0348-09 中图分类号: S181 文献标志码:A

近年来,湿地研究已成为全世界关注的问题。我国从20 世纪80年代开始开展湿地保护工作。由于对湿地资源的不 合理利用,导致一些地区的湿地生态系统发生明显很化,湿地 资源被破坏,直接影响到中国水资源供给安全,并最终将危害 国家生态安全,对全民族的生存和发展构成现实的威胁和未 来难以估量的损失[1];因此,掌握湿地资源的变化情况显得 尤为重要。由于湿地是一种兼具水分、土壤、空气、生物等组 分的独特的复合型生态系统,对全球变化具有较高的敏感 性[3-6],而青藏高原上又发育着世界上独一无二的大面积高 寒湿地群^[3,7-9],它们对高原生态环境意义重大。青藏高原湿 地多为高寒沼泽、高寒沼泽化草甸和高寒湖泊,具有生态蓄 水、水源补给、气候调节等重要的生态功能,在防止全球水危 机方面起着关键的作用。因此,青藏高原湿地在全球变化研 究中占有特殊的重要地位,已经引起国内外学者的关注^[2]。 研究表明,在以下气候情景下(降水增加/减少10%,温度增 高1℃、2℃和3℃),草本沼泽的面积都会减少[10]。黄河上 游河曲地区位于阿尼玛卿山东段。黄河从阿尼玛卿山南侧自 青海省流到四川省、甘肃省交界处转弯后向北,再由阿尼玛卿 山北侧进入青海省,形成"U"形走向,地貌多为高山、草甸、草 原。本研究选择有一定研究基础和气象观测数据的高原湿地 较为集中的黄河上游河曲地区河南、泽库、玛曲和若尔盖4个 县作为研究对象,采用 Jay Gao 等(2012)的分类体系[4],将高 原湿地分为:山前湿地(P)、高山湿地(A)、河漫滩湿地(F)、

阶地湿地(T)、河谷湿地(V)、河流湿地(R)和湖泊湿地(L). 从不同湿地类型和植物群落特征方面进行物种的统计;运用 统计分析的方法,研究与高原湿地水分密切相关的气温、降 水、蒸发量、日照、地温等气象因子的变化,探讨黄河上游河曲 地区高原湿地变化的自然原因。

1 研究区概况和研究方法

1.1 研究区概况

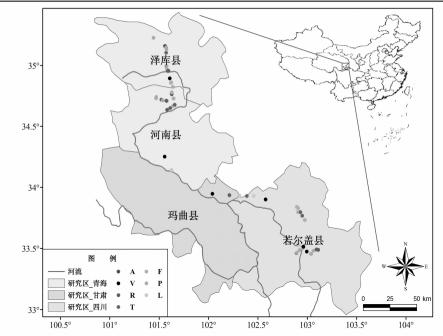
选取高原湿地较为集中的四川省若尔盖具、甘肃省玛曲 县及青海省的泽库县、河南县为研究范围(图1)。该地区年 平均温度为 0.6~1.2 ℃, 年均降水量为 590.4~762.2 mm。 该地区地貌类型为低山、丘陵、河谷阶地、丘陵与宽谷相间分 布为主要特征,谷底海拔3500 m左右,丘顶海拔3800 m左 右,周围山地海拔达4000 m[11]。黄河在该地区形成第1个 大湾,巨大宽谷在分豁高原形成丘陵过程中形成,因此为沼泽 发育提供了良好的地貌条件。

1.2 研究方法

- 1.2.1 湿地地形地理指标及植物群落指标测定 于 2012 年 8月在黄河上游河曲地区若尔盖县、玛曲县、河南县、泽库县 进行野外实地观测。在各个样方(1 m×1 m)内,用 GPS 测定 海拔、经度、纬度,用袖珍经纬仪测定坡向、坡度,用目测法测 定植物种类,用便携式水分测定仪(HH2型)测得每一样方 0~10 cm 土层的水分, 重复 2 次。
- 1.2.2 青南高原气象站点的选择和计算方法 根据气象资 料的连续性和完整性,选取了黄河上游河曲地区若尔盖县、玛 曲县、河南县、泽库县4个站1994—2012年的气象观测资料, 各单点气象站的资料仅代表该气象站所在县的气象资料。设 各气象序列资料分别作为一个时间序列,为: Y_1,Y_2,Y_3,Y_4 , \cdots, Y_{s} , 它可以用一个多项式来表示:

$$\hat{y} = a_0 + a_1 x + a_2 x^2 \dots + a_n x^n \, (1)$$

其中 x 为时间,单位为年。


通信作者: 李希来, 教授, 博士生导师, 主要从事草地生态研究。 E - mail · xilai - li@ 163. com

收稿日期:2015-01-12

基金项目:国家自然科学基金(编号:41165008):教育部长江学者和 创新团队发展计划(编号:IRT13074);青海省国际科技合作计划 (编号:2013-H-801)。

作者简介: 林春英(1978一), 女, 工程师, 主要从事气象及草地生态研 究。E - mail:qhryblin@163.com。

气象要素的气候趋势变化率方程为:

P—山前湿地; A—高山湿地; F—河漫滩湿地; T—阶地湿地; V—河谷湿地; R—河流湿地; L—湖泊湿地

图1 研究区范围

$$\frac{\mathrm{d}\,\hat{y}(t)}{\mathrm{d}t} = a_{1\,\circ} \tag{2}$$

其中 $a_1 \times 10$ 称作气候倾向率。

1.2.3 数据分析 数据分析采用 Excel 2007 和 SPSS 17。

2 结果与分析

2.1 河曲地区7种不同类型湿地物种多样性分析

湿地科学分类是湿地研究的基础,湿地分类早在1900年左右就开始了,那是对欧洲和北美泥炭地的分类^[12]。本研究根据研究区区域特性,采用 Jay Gao 的分类体系,样地选在黄河上游河曲地区河南县、泽库县、玛曲县和若尔盖4个县,确定7种湿地类型,分别是山前湿地(P)、高山湿地(A)、河漫滩湿地(F)、阶地湿地(T)、河谷湿地(V)、河流湿地(R)和湖

泊湿地(L)。每种湿地类型空间重复 4~11 次,每湿地类型 重复 2 个样方。

山前湿地是指分布在两侧由山脉或部分被群山包围的沼泽型草地。山前湿地的大小由山脉或山脉之间的空间进行控制,其地形平缓开阔,地表长期或暂时积水,故山前湿地在高海拔地区呈斑块状镶嵌分布。

黄河上游河曲地区山前湿地(P)8个样地中共有14科31属38种(表1、表2),其中菊科的种类最多,共7属8种;其次是毛茛科和玄参科,均为4属4种(图2)。菊科的种类占总种数的21.1%、总属数的22.6%;毛茛科和玄参科的种类占总种数的10.5%、总属数的12.9%。黄河上游河曲地区山前湿地(P)样地中土壤含水量的平均值为63.63%(表2)。

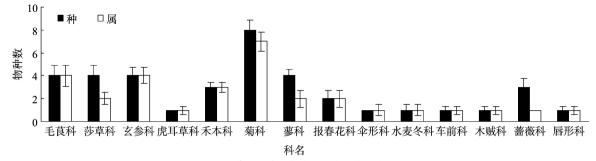


图2 黄河上游河曲地区山前湿地物种

分布于平均海拔 4 310 m 的山麓中央或底下部分的高原湿地,是所有湿地中分布海拔最高的。由于高海拔和高斜度,这种湿地的面积很小,通常为几十平方米,形状因地形条件不同而表现为不规则,可以分为"V"形或"J"形。黄河上游河曲地区高山湿地(A)4 个样地中共有 15 科 35 属 44 种(表 1),其中禾本科的种类最多,为 6 属 6 种;其次是莎草科和菊科,均为 4 属 6 种(图 3)。禾本科的种类占总种数的 13.6%、总

属数的 17.1%; 莎草科和菊科的种类占总种数的 13.6%、总属数的 11.4%。 黄河上游河曲地区高山湿地(A)样地中土壤含水量平均值为 63.39%(表 2)。

河漫滩指分布于河道和山之间广袤的平坦区域。河漫滩湿地即指分布于河漫滩的湿地。河漫滩湿地具有平坦的特点而山前湿地则有倾斜度,可以由此区分这2类湿地。黄河上游河曲地区河漫滩湿地(F)11个样地中共有17科35属45

表 1 黄河上游河曲地区 7 种不同类型湿地物种表							
	山前湿地 (P)	高山湿地 (A)	河漫滩湿地 (F)	阶地湿地 (T)	河谷湿地 (V)	河流湿地 (R)	湖泊湿地 (L)
菊科	细叶亚菊、川藏蒲 公英、聚头菊、垂头 菊、火绒草、紫菀、 星状风毛菊、黑苞 风毛菊	蒲公英、美丽风毛 菊、垂头菊、火绒 草、星状风毛菊、黑 苞风毛菊、岩生风 毛菊	细叶亚菊、美丽风毛菊、蒲公英、黑苞风毛菊、火绒草、臭蒿、星状风毛菊、龙胆、垂头菊、紫菀、刺儿菜	细叶亚菊、星状风 毛菊、火绒草、蒲公 英、美丽风毛菊、刺 儿菜、冷蒿、紫菀	垂头菊	火绒草、美丽 风毛菊、细叶 亚菊	紫 炭、星 炭、灰、水 紫、水 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、 紫、
毛茛科	驴蹄草、云生毛茛、 乌头、翠雀	驴蹄草、云生毛茛、 高山唐松草、银莲 花、乌头	高山嵩草、毛茛、驴蹄草、乌头、云生毛茛、 银莲花、高山唐松草	毛茛、乌头	驴蹄草、毛茛、乌头	银莲花、高山 唐松草	驴蹄草、 毛茛
玄参科	兔耳草、马苋蒿、兰 石草、小米草	马苋蒿、兰石草、小 米草	兰石草、小米草	兰石草、马苋蒿	马苋蒿	兰 石 草、马 苋蒿	马苋蒿
莎草科	藏嵩草、矮嵩草、嵩草、苔草	矮嵩草、黑褐苔草、 藏 嵩 草、苔 草、藨 草、华扁穗		苔草、矮嵩草、藏嵩 草、藨草、华扁穗	藏 草 草、 革 草 、 善 草 、 善 草 、 華 、 華 華 、 華 華 編 ் 善 華 、 撰 著 草	苔草、矮 嵩草、岩草、岩草、 高穗	苔草、华 扁穗、嵩 草
禾本科	早熟禾、羊茅、垂穗披肩草	早熟禾、针茅、双叉 细柄茅、垂穗披肩 草、醉马草、羊茅	早熟禾、垂穗披肩草、 针茅、羊茅	早熟禾、冰草、羊 茅、垂穗披肩草	早熟禾	冰草	早熟禾
蓼科	西伯利亚蓼、白藜、 珠牙蓼、巴天酸模	圆穗蓼、黄帚橐吾、 珠牙蓼、巴天酸模	黄帚橐吾	黄帚橐吾、西伯利 亚蓼	黄帚橐吾、西 伯利亚蓼		西 伯 利 亚蓼
蔷薇科	鹅绒委陵菜、雪白 委陵菜、二列委 陵菜	鹅绒委陵菜、雪白 委陵菜、金露梅	鹅绒委陵菜、雪白委 陵菜	鹅绒委陵菜、雪白 委陵菜、高茎委陵 菜、二裂委陵菜、无 尾果	鹅绒委陵菜	雪白委陵菜、 鹅绒委陵菜	鹅 绒 委 陵菜
报春花科 唇形科	海乳草、点地梅密花香薷	V. II dh	海乳草 密花香薷	密花香薷	海乳草	海乳草	海乳草
水麦冬科 碟形花科	海韭菜	海韭菜 棘豆	海韭菜 棘豆	海韭菜	海韭菜		
伞形科	棱子芹	株立 棱子芹	株立 棱子芹		棱子芹		
车前科	车前		车前		车前	车前	
木贼科	问荆	问荆	问荆	问荆		问荆	
虎耳草科	虎耳草		虎耳草	虎耳草	虎耳草		虎耳草
龙胆科		麻花艽、鳞叶龙胆、 华丽龙胆	麻花艽、湿生扁蕾、鳞 叶龙胆	麻花艽、华丽龙胆	鳞叶龙胆	麻花艽	四数獐牙菜
豆科		异叶米口袋、黄芪				花苜蓿、黄芪、 异叶米口袋	
大戟科				泽漆			
忍冬科		忍冬					
百合科		野葱	野葱	野葱	tddo	I culto	
黎科 エルバ				灰藜	灰藜	灰藜	
石竹科				薄蒴草	薄蒴草	薄蒴草	_

表 2 黄河上游河曲地区 7 种湿地的植物组成及土壤含水量

表 2					
湿地类型		植物组成			土壤含水量
	业地失望	科	属	种	(%)
	山前湿地	14	31	38	63.63 ±21.08a
	高山湿地	15	35	44	$63.39 \pm 22.25 a$
	河漫滩湿地	17	35	45	$52.58 \pm 9.22ad$
	阶地湿地	15	34	39	$33.10 \pm 15.70 \mathrm{b}$
	河谷湿地	11	17	20	$63.22 \pm 11.78a$
	河流湿地	12	20	22	$39.11\pm5.75\mathrm{cbd}$
	湖泊湿地	10	16	16	$57.75 \pm 14.73 ab$

注:表中土壤含水量的数据为平均值+标准差;同列数据后不同 小写字母表示差异显著(P<0.05)。

种(表1),其中菊科的种类最多,共8属10种;其次是毛茛 科,5属8种(图4)。菊科的种类占总种数的22.2%、总属数 的22.9%。黄河上游河曲地区河漫滩湿地(F)样地中土壤含 水量的平均值为52.58%(表2)。河漫滩湿地由于河水泛滥 洪水补给,河漫滩湿地的蓄水量是这些湿地类型中最高的,物 种多样性相对较其他几种湿地高。

阶地湿地分布于河流阶地,与阶地湿地比邻的是河流主 流,河流水面与阶地表面高度几乎一致。平均海拔为 4 248 m,在地形和河流分布上与山前湿地相区别。黄河上游 河曲地区阶地湿地(T)5个样地中共有15科34属39种(表 1),其中菊科的种类最多,共8属9种;其次是莎草科,4属5

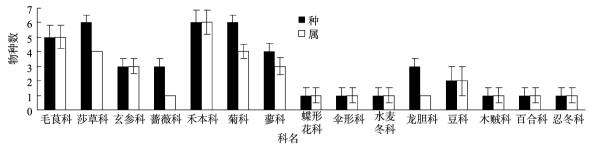


图3 黄河上游河曲地区高山湿地物种

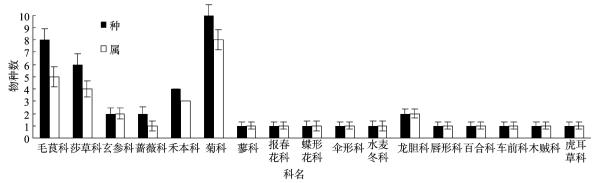


图4 黄河上游河曲地区河漫滩湿地物种

种(图 5)。菊科的种类占总种数的 23.1%、总属数的 23.5%。黄河上游河曲地区阶地湿地(T)5个样地中土壤含

水量的平均值为33.10%(表2)。

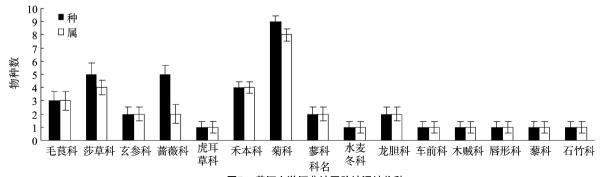


图5 黄河上游河曲地区阶地湿地物种

河谷湿地通常分布在山间谷地,由于山谷不会绝对闭合,因此河谷湿地不是闭合湿地。平均海拔为4252 m,略低于山前湿地。与高原湿地不同,山谷湿地的大小由周围的山脉来决定。黄河上游河曲地区河谷湿地(V)4个样地中共有11

科 17 属 20 种(表 1),其中莎草科的种类最多,共 4 属 7 种; 其次是毛茛科,为 3 属 3 种(图 6)。莎草科的种类占总种数的 35%、总属数的 23.5%。黄河上游河曲地区河谷湿地(V) 样地中土壤含水量的平均值为 63.22%(表 2)。

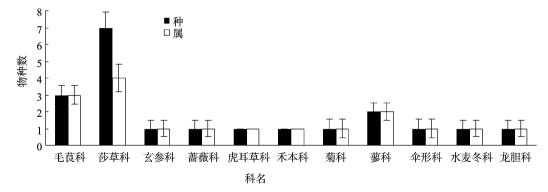


图6 黄河上游河曲地区河谷湿地物种

河流湿地与河流有关。在高原环境下,河流蜿蜒流动,形成很多交织的支流,2条交织的支流中间通常分布岛状草地或河流湿地。河流湿地的平均海拔为4220m,是这几类湿地中分布海拔最低的湿地。黄河上游河曲地区河流湿地(R)5个样地中共有12科20属22种(表1),其中莎草科的种类最多,共3属4种:其次是豆科和菊科,均为3属3种(图7)。

莎草科的种类占总种数的 18.27%、总属数的 15%。黄河上游河曲地区河流湿地(R)样地中土壤含水量的平均值为 39.11%(表2)。河流湿地(R)周边基本上是自河谷向河谷两侧广大地区抬升的地形,容易诱发水力侵蚀和重力侵蚀,因此河流湿地(R)物种多样性相对低。

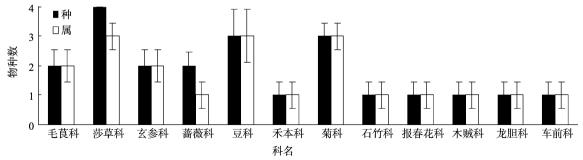


图7 黄河上游河曲地区河流湿地物种

湖泊湿地分布于湖泊浅水区,内有水生植物和耐湿植物。由于高原植物都由草和低矮灌木组成,湖泊湿地的显著特征是有积水。湖泊湿地的另一特征是紧靠湖岸,或分布在河水流入湖泊的交接口附近。黄河上游河曲地区湖泊湿地(L)4个样地中共有10科16属16种(表1),其中菊科的种类最

多,共4属4种;其次是莎草科,为3属3种(图8)。菊科的种类占总种数的25%、总属数的25%。黄河上游河曲地区湖泊湿地(L)样地中土壤含水量的平均值为57.75%(表2)。湖泊湿地(L)周边比较开阔,地形起伏较小,土壤水分含量相对比较高,基本上呈水渍状,故物种多样性较低。

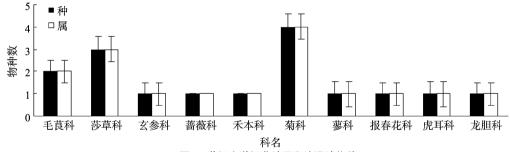


图8 黄河上游河曲地区湖泊湿地物种

3.2 气象因子对湿地变化影响分析

黄河上游河曲地区高原湿地的最重要组成部分是若尔盖高原湿地,自20世纪60年代开始,该地区沼泽湿地开始出现退化迹象^[13],近些年沙化、旱化现象已逐渐加重。气候条件是湿地形成发展的基础,也是湿地形成的基本驱动力,特别是水热条件,它是湿地景观形成发育的决定因素^[14]。因此,本研究利用1994—2012年黄河上游河曲地区4个县年平均气温、年降水量、年蒸发量、年日照时数和年平均地温等资料,探讨黄河上游河曲地区高原湿地退化的自然原因。

- 3.2.1 黄河上游河曲地区气温变化趋势 气温主要通过蒸散发量和冻土变化影响湿地生态系统的演化。温度升高,蒸散发速率增大;冻土与湿地存在着相互促进、同步消长的共生机制^[15]。从图 9 可以看出,1994 年以来,研究区各县年平均气温均不同程度上升,尤以玛曲县上升趋势最明显。玛曲县年平均气温从 1994 年的 $1.5\,^{\circ}$ ℃升高到 2012 年的 $2.5\,^{\circ}$ ℃,其中 1997 年最低,为 $1.1\,^{\circ}$ ℃,而 2010 年高达 $3.3\,^{\circ}$ ℃。各县近 19年的气温气候倾向率分别达到 $0.669\,^{\circ}$ ℃/10 年、 $0.637\,^{\circ}$ ℃/10 年、 $0.767\,^{\circ}$ ℃/10 年和 $0.647\,^{\circ}$ ℃/10 年。
- 3.2.2 黄河上游河曲地区降水量变化趋势 湿地形成的先 央条件和环境因素是水,湿地面积的大小由水资源量的多少

决定。从 1994 年以来,研究区的年降水量总体上都呈现了增加趋势(图 10),4 个县近 19 年的年降水量的线性增加率分别达到 73.896 $\mathbb{C}/10$ 年,73.156 $\mathbb{C}/10$ 年,48.191 $\mathbb{C}/10$ 年和 55.379 $\mathbb{C}/10$ 年。研究区的年降水量呈现增加趋势,但湿地退化的情况却发生,好像降水的年际变化并不是湿地减少的直接原因。

- 3.2.3 黄河上游河曲地区蒸发量变化趋势 太阳辐射、湿度、风速等气象因素都影响着湿地的蒸发蒸腾。对研究区各县年蒸发量进行分析,发现河南县的蒸发量没有明显的变化趋势,泽库县、玛曲县和若尔盖县蒸发量都有减少的趋势。相对泽库县和玛曲县,若尔盖县年蒸发量减少更加明显,年蒸发量从1994年的483.0 mm减少到2012年的202.3 mm,2001年蒸发量达到峰值后开始明显的下降,其线性减少率为128.82 mm/10年(图11)。
- 3.2.4 黄河上游河曲地区年日照时数变化趋势 从图 12 可以看出:河南县年日照时数有所增加,气候倾向率达到163.52 h/10 年,玛曲县和若尔盖县年日照时数有所减少,泽库县的年日照时数无显著增加趋势。对湿地而言,一方面强烈的太阳辐射可以大大提高湿地的蒸发蒸腾强度,引起更多的水量损失^[16],另一方面日照时数的延长会使下垫面温度升

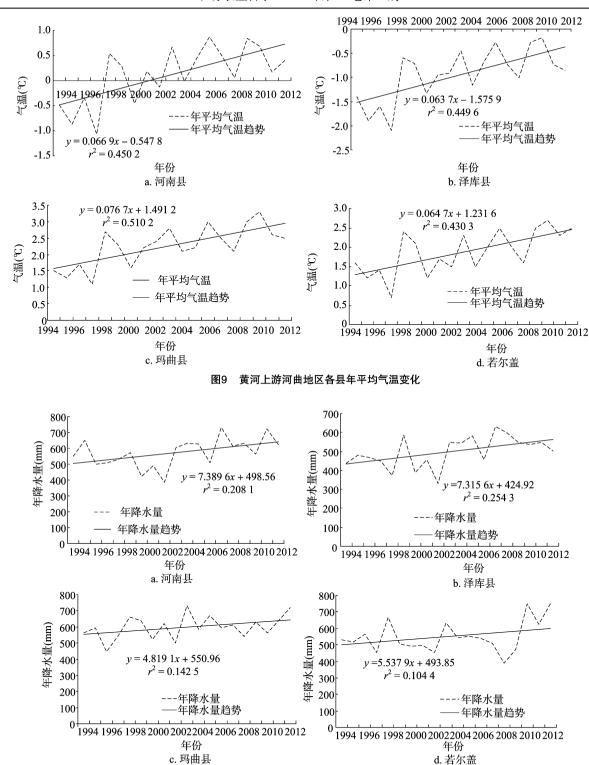
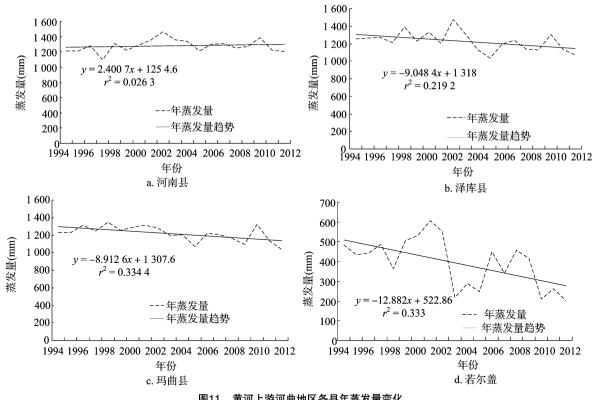
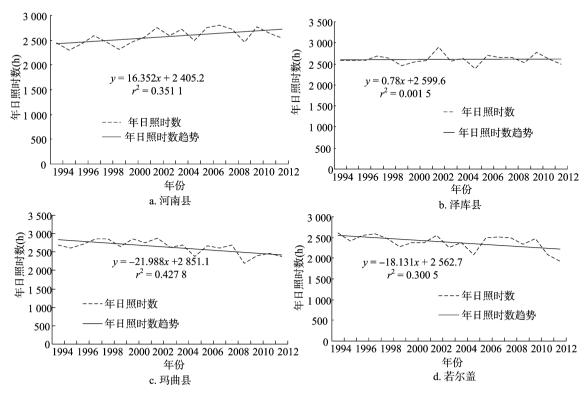



图10 黄河上游河曲地区各县年降水量变化


高从而导致冻土的消融,间接地影响湿地的发展和演化。3.2.5 黄河上游河曲地区年地温变化趋势 从图 13 可以看出:研究区 4 个县的年平均地温都有明显增加,其中河南县的年平均地温增加幅度最大。各县近 19 年的年平均地温线性增加率分别达到 1.717 ℃/10 年、1.39 ℃/10 年、1.168 ℃/10年和 1.181 ℃/10 年。维持湿地存在的关键因素是地表保持足够的水分,而地温上升直接导致下垫面蒸散发加剧,湿地土

壤易失水,湿地生态系统发生退化。

3.2.6 影响湿地退化气象条件综合评价 通过对黄河上游河曲地区上述4个县的气象因子分析可以看出,气候出现了干暖化趋势。气候的暖干变化趋势造成冰川普遍出现退缩和物质负均衡^[17]。温度升高加剧了湿地水分的蒸发,造成了冰川退缩,冻土冻融过程改变、湖泊水面萎缩、湖水内流化和盐碱化^[18]、植被生境改变并退化;年降水量增加有效地补充了

黄河上游河曲地区各县年蒸发量变化

黄河上游河曲地区各县年日照时数变化 图12

河流、湖泊水量,减缓了湿地退化;研究表明,湿地具有增加湿 度降低温度的作用,蒸发是耗热过程,蒸发量越大,耗热量越 多,导致湿地区气温降低;日照时数的延长使下垫面温度升高 可能导致湿地生态环境更加脆弱,湿地容易发生退化;地温上 升造成土壤失水,湿地生态系统退化[19]。根据上述分析结 果,将各气象因子对湿地水文状况的影响程度划分为有利、不 明显、不利3个等级,分别赋值1、0、-1。

由表3可见,对湿地水分平衡主要产生不利的影响和影

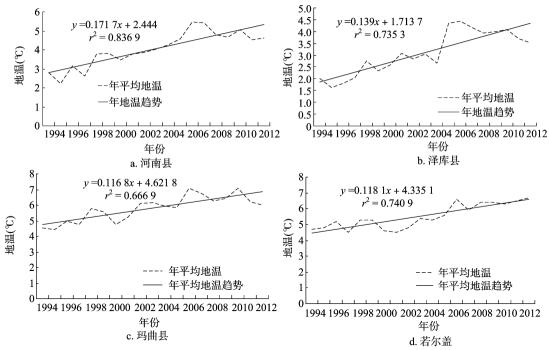


图13 黄河上游河曲地区各县年平均地温变化

响不明显的气象因子多,而产生有利影响的气象因子较少。 产生较大不利影响的气象因子为:年平均气温的升高、年平均 地温差的升高、年日照时数的增加及蒸发量的减少。另外,研 究区 4 个县湿地退化影响气象因子也不同,对于河南县,主导 因子为年平均气温升高、年日照时数增加、年平均地温升高; 泽库县和玛曲县湿地退化的主要原因是年平均气温和年平均 地温升高;若尔盖湿地主要受到年平均气温和年平均 地温升高

表 3 气候因子对河区地区高原湿地影响的综合评价

气候因子	河南县	泽库县	玛曲县	若尔盖县	综合评价
气温	- 1	- 1	- 1	-1	-4
降水量	0	0	0	0	0
蒸发量	0	0	0	- 1	- 1
日照时数	- 1	0	1	1	1
地温	- 1	- 1	- 1	- 1	-4
综合评价	-3	-2	- 1	-2	-8

4 结论

黄河上游河曲地区山前湿地(P)样地中共有14科31属38种,其中菊科的种类最多,共7属8种。黄河上游河曲地区高山湿地(A)样地中共有15科35属44种,其中禾本科的种类最多,为6属6种;其次是莎草科和菊科,均为4属6种。黄河上游河曲地区河漫滩湿地(F)样地中共17科35属45种,其中菊科的种类最多,共8属10种;其次是毛茛科,为5属8种。黄河上游河曲地区阶地湿地(T)样地中共有15科34属39种,其中菊科的种类最多,共8属9种;其次是莎草科,4属5种。黄河上游河曲地区河谷湿地(V)样地中共有11科17属20种,其中莎草科的种类最多,共4属7种;其次是毛茛科,为3属3种。黄河上游河曲地区河流湿地(R)样

地中共有12科20属22种,其中莎草科的种类最多,共3属4种;其次是豆科和菊科,均为3属3种。黄河上游河曲地区湖泊湿地(L)样地中共有10科16属16种,其中菊科的种类最多,共4属4种;其次是莎草科,为3属3种。本次初步野外调查结果显示,黄河上游河曲地区湿地植被组成中原生植物减少,菊科等杂类草增多;河漫滩湿地(F)物种多样性较高,湖泊湿地(L)相对较低,今后有必要加强对河漫滩湿地(F)特别是土壤和植被变化的研究。

黄河上游河曲地区高原湿地样地中土壤含水量的平均值 从高到低依次为山前湿地(P)、高山湿地(A)、河谷湿地(V)、 湖泊湿地(L)、河漫滩湿地(F)、河流湿地(R)、阶地湿地 (T)。

通过分析 1994—2012 年黄河上游河曲地区 4 个县年平均气温、年降水量、年蒸发量、年日照时数、年平均地温等资料后可以看出:4 个县的年平均气温均不同程度上升,气温气候倾向率分别为 0.669 $^{\circ}$ $^{\circ}$

通过对研究区影响湿地变化的气象因子分析后认为,对湿地产生不利影响的因素有:年平均气温升高、年平均地温升高、年日照时数延长及蒸发量减少,而年降水量的变化则未显示出与湿地退化有明显关系。

致谢:甘肃省玛曲县气象局、四川省若尔盖县气象局提供 了气象资料, 谨致谢忱!

参考文献:

- [1] 陈宜瑜, 吕宪国. 湿地功能与湿地科学的研究方向[J]. 湿地科学, 2003, 1(1):7-11.
- [2] 白军红, 欧阳华, 徐惠风, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2004, 23(4):1-9.
- [3]罗 磊. 青藏高原湿地退化的气候背景分析[J]. 湿地科学, 2005,3(3):190-199.
- [4] Gao J, Li X L, Brierley G. Topographic influence on wetland distribution and change in Maduo County, Qinghai Tibet Plateau, China [1]. Journal of Mountain Science, 2012, 9(3):362 371.
- [5] 陈克林, 张小红, 吕 咏. 气候变化与湿地[J]. 湿地科学, 2003, 1(1):73-77.
- [6]宋长春. 湿地生态系统对气候变化的响应[J]. 湿地科学,2003, 1(2):122-127.
- [7] 陈桂琛, 黄志伟, 卢学峰, 等. 青海高原湿地特征及其保护[J]. 冰川冻+,2002,24(3):254-259.
- [8]朱万泽, 钟祥浩, 范建容. 西藏高原湿地生态系统特征及其保护对策[J]. 山地学报, 2003, 21(增刊1):7-12, 39.
- [9]郑 杰.蔡 平. 青海省湿地类型保护区现状与发展对策[J].

- 青海科技,2002,9(6):16-19.
- [10]黄桂林. 青海三江源区湿地状况及保护对策[J]. 林业资源管理.2005(4).35-39.
- [11] 赵魁义. 中国沼泽志[M]. 北京: 科学出版社, 1999.
- [12] 刘厚田. 湿地的定义和类型划分[J]. 生态学杂志,1995,14 (4)·73-77.
- [14]张国坤,邓 伟,吕宪国,等. 新开河流域湿地景观格局动态变化过程研究[J]. 自然资源学报.2007.22(2):204-210.
- [15]孙广友. 试论沼泽与冻土的共生机理——以中国大小兴安岭地区为例[J]. 冰川冻土,2000,22(4):309-316.
- [16] 維维国,王世和,黄 俊. 太阳光照对湿地蒸发蒸腾的影响[J]. 太阳能学报,2007,28(4):401-404.
- [17] 王根绪,李 琪,程国栋,等. 40 年来江河源区的气候变化特征 及其生态环境效应[J]. 冰川冻土,2001,23(4):346-352.
- [18]马柱国,魏和林,符淙斌.土壤湿度与气候变化关系的研究进展与展望[J]. 地球科学进展,1999,14(3):88-94.
- [19]张 芸,吕宪国,倪 健. 三江平原典型湿地冷湿效应的初步研究[J]. 生态环境,2004,13(1):37-39.

(上接第53页)

基。为提高大岩桐瓶苗移栽成活率,可先栽在珍珠岩中,也可栽在珍珠岩:椰糠=1:1的基质中^[12],最好先将基质灭菌。大岩桐栽培时,浇水时坚持"见干才浇,不干不浇,浇则浇透"的原则,并注意避免直接将水喷洒在叶片和花朵上,尤其是在通风不良、温度偏低时,这是由于大岩桐叶片表面有密集茸毛,叶面渍水易腐烂生病。大岩桐虽不喜多水的土壤环境,却喜较高的空气湿度,注意土壤要通气性好,栽植不宜过深。

3 讨论

鉴于大岩桐的生物学特性和发展前景,本试验以大岩桐叶片为外植体进行离体培养,优化了其再生体系,研究目的旨在指导并应用于生产、节约成本和适应大规模生产,并在优化大岩桐高频再生体系的基础上,为大岩桐的遗传转化体系的建立和大岩桐的品种改良提供参考。适当浓度的细胞分裂素6-BA和NAA能有效诱导愈伤组织和芽的继代增殖,浓度太高则抑制愈伤组织分化成芽与芽丛的分化和生长。大岩桐叶片在MS+6-BA2.0mg/L+NAA0.2mg/L培养基上的出愈率最高;在MS+6-BA1.0mg/L+NAA0.1mg/L培养基上既生长愈伤组织又生长较少的不定芽,其芽的再生率最高;在MS+6-BA0.5mg/L+NAA0.1mg/L培养基上很少或不形成愈伤组织,而直接形成不定芽。可以根据不同的目的,调整激素不同配比来满足需要,为建立大岩桐快速繁殖体系和工厂化育苗提供一定技术参数,并为大岩桐种质资源的保护和开发利用奠定一定的基础。

参考文献:

- [1]关宏斌. 大岩桐的莳养方法[J]. 内蒙古教育学院学报:自然科学版,1999,12(4);40-41.
- [2]谢吉容,李国昌,梁国鲁. 大岩桐的研究概况及展望[J]. 西南园 艺,2006,34(2):33-36.
- [3] Heinz D J. Induced mutations in vegtatively propagated plants [R]. Viemma; International Atomic Energy, 1973;55.
- [4] 罗士伟. 植物组织培养在花卉上的应用[J]. 植物生理学通讯, 1979(3):1-9.
- [5]王树耀,黄白红. 大岩桐的组培快繁技术研究[J]. 湖南文理学 院学报:自然科学版,2004,16(1):43-44.
- [6]王家远,罗荣芬,周大刚,等. 大岩桐叶柄诱导再生植株[J]. 贵州师范大学学报:自然科学版,2004,22(4):19-21.
- [7]王立凤,石兰英,杨 静. 大岩桐的组织培养[J]. 湖北农业科学,2012,40(6):31-33.
- [8]何若天,林新全,邱景锋. 氯化胆碱对大岩桐组培苗生长的影响 [J]. 广西农业生物科学,2002,21(2):105-107.
- [9]赵小梅,吴翠荣,刘石泉,等. NAA、IBA 对大岩桐块茎形成的影响[J]. 上海师范大学学报:自然科学版,2006,35(4):61-64.
- [10] 庞基良, 王利琳, 胡江琴, 等. 大岩桐花萼切块离体培养直接再生花芽的形态观察(简报)[J]. 分子细胞生物学报, 2006, 39 (4):383-389.
- [11] 周根余,周卫华,程磊. 大岩桐组培中休眠现象的初步研究(简报)[J]. 上海农业学报,2000,16(2):69-72.
- [12]李爱华. 大岩桐组培苗移栽技术研究初报[J]. 湖北林业科学, 2004(2):29-31.