张艳萍,赵 玮,董治宝,等. 甘肃荒漠地区野生白刺的组织培养[J]. 江苏农业科学,2015,43(9):80-82. doi:10.15889/j. issn. 1002-1302.2015,09.022

甘肃荒漠地区野生白刺的组织培养

张艳萍1,赵 玮2,董治宝3,罗万银3

(1. 甘肃省农业科学院生物技术研究所,甘肃兰州 730070; 2. 甘肃省农业科学院作物研究所,甘肃兰州 730070; 3. 中国科学院寒区旱区环境与工程研究所沙漠与沙漠化重点实验室,甘肃兰州 730000)

摘要:以荒漠野生白刺作为试验材料,研究不同消毒方式对白刺茎段无菌外植体建立的影响及不同激素、不同浓度组合对野生白刺试管苗增殖和生根的影响。结果表明:选取室内种子萌发的实生苗茎段为外植体,用 10% NaClO 消毒 $15\sim18$ min 可以获得理想的成活率;适宜的增殖培养基是 MS+0.2 mg/L 6-BA+0.5 mg/L 1BA 或 MS+0.5 mg/L 1BA 以较适宜的生根培养基是 1/2 MS+0.5 mg/L 1BA。不添加激素的简化培养基 MSO 对白刺也有较为理想的增殖和生根效果。

关键词:甘肃:荒漠地区:野牛白刺:增殖:牛根:组织培养

中图分类号: S580.4 文献标志码: A 文章编号:1002-1302(2015)09-0080-03

当前,全球盐碱地面积已达 9.5 亿 hm^{2[1]},其中我国盐碱土 地资源约为 0.99 亿 hm²,其中现代盐碱土面积为 0.37 亿 hm², 残余盐碱土约 0.45 亿 hm²,并且尚存在有约 0.173 亿 hm² 的 潜在盐碱土[2]。大面积盐碱地、荒漠地的开发利用对环境的 改善具有重要的现实意义。白刺(Nitraria L.),灌木,蒺藜 科,全世界有12个种,我国有8个种,甘肃有5种[3],其根系 发达,具有很强的防风固沙、抗旱、抗盐碱、耐热、耐土壤瘠薄 和耐沙埋能力,可明显改良土壤物理性状,提高土壤肥力[4]。 此外, 白刺根寄生的锁阳(Cynomorium songaricum Rupr) 为传 统名贵的温补药材[5],白刺果含多种营养成分和丰富的微量 元素,具有极高的营养和药用价值[6]。近年来,从野生植物 资源中寻找新的、潜在的药食同源植物,已成为国内外学者研 究的热点,而沙生植物白刺则是经过长期的自然筛选而保留 下来的优胜者之一,白刺因其顽强的生命力和优良的遗传基 因而受到沙区人们的喜爱[7]。然而据调查,白刺种间杂交混 乱,分化严重[8],同时随着自然环境的严重恶化和人为的大 幅度破坏,白刺出现了不同程度的退化,大面积死亡或生长不 良,结实率下降或不结实,使得这一特殊野生资源的种群繁衍 面临着严重的威胁[9]。因此,为可持续利用这一野生资源, 保持其优良性状的稳定性,采用离体繁育技术就成为重要途 径之一。

目前,较多学者对白刺进行过多方面的研究^[10-14],其中关于白刺组培再生方面的研究已有不少^[15-18],发现不同品种的白刺分化增殖所需的激素种类差异很大。西伯利亚白刺和唐古特白刺需要 6 - BA 和 IBA 的浓度与配比存在很大差异^[16,19],添加一定量的 IAA 和 GA 更有利于天津野生白刺的

增殖。可见,不同区域品种的基因型不同,所需激素不同,这是组培研究工作中普遍存在的问题^[20-21]。本试验以甘肃荒漠野生白刺为材料,对其组培快繁进行研究,以期建立一套甘肃地区野生白刺较为简易的组培方法,为白刺的离体繁育提供参考。

1 材料与方法

1.1 试验材料

试验材料为荒漠野生白刺,采自甘肃省酒泉市巴丹吉林沙漠边缘,地理坐标为39°44′N、98°31′E,海拔1000~1500 m。于2012年7月和2013年4月先后2次采样,第1次于2012年7月下旬采摘的带果实枝条,冰盒内带回实验室,剪取顶端幼嫩枝条备用,同时采摘果实收集种子备用;第2次于2013年4月下旬,剪取当年旺盛新枝,冰盒内带回实验室备用。2次采样均为同株野生白刺枝条。

实生苗获得:2013年2月,将收集的野生白刺种子种于温室花盆内,即可获得实生苗。

1.2 试验方法

1.2.1 取材和消毒处理 取7月和4月野外白刺单株茎段,流动自来水冲洗30 min,放于超净工作台,用75%乙醇消毒30 s,0.1%氯化汞处理4、6、8、10 min;取4月野外采集的茎段和种子发芽得到实生苗的茎段,流动自来水冲洗30 min,放于超净工作台,用75%乙醇消毒30 s,10%次氯酸钠处理7、10、12、15、18 min。消毒剂处理完之后,用无菌水冲洗4~5次,接于MS培养基上,在温度(25±2)℃、光照强度2000 lx、光照周期16 h/d 下培养1周,统计消毒率和无菌苗成活率。

1.2.2 增殖培养基筛选 取启动培养获得的无菌苗茎段,接种于添加不同激素浓度配比的 MS 培养基中,激素浓度水平和组合见表 1。以简化 MS 培养基为对照,简化培养基以自来水配置,市售白糖代替蔗糖,简写为 MSO。60 d 后调查增殖系数。1.2.3 生根诱导 将切取的单芽茎段,接种于添加不同浓度IBA 和 IAA 的 1/2MS 培养基中,进行生根诱导,浓度水平和组合见表 2,以简化培养基 MSO 作对照。记录生根时间,40 d

收稿日期:2014-09-12

基金项目:国家农村领域科技计划(编号:2012BAD16B0303)。

作者简介: 张艳萍(1978—), 女, 甘肃武威人, 助理研究员, 主要从事分子生物学、病毒检测以及中药材组培研究。E-mail: 64929217 @qq. com。

通信作者:董治宝。E - mail:zbdong@lzb.ac.cn。

表 1 添加的外源激素浓度水平和配比

培养基 编号	激素及配比 (mg/L)	培养基 编号	激素及配比 (mg/L)
1	6 - BA(1.0) + NAA(0.2)	7	6 - BA(1) + IBA(0.5)
2	6 - BA(0.5) + NAA(1.0)	8	6 - BA(1.5) + IBA(0.5)
3	6 - BA(1.0) + IAA(0.3)	9	$6-\mathrm{BA}(2.0)+\mathrm{IBA}(0.5)$
4	6 - BA(0.5) + IAA(0.5)	10	$6-\mathrm{BA}(2.5)+\mathrm{IBA}(0.5)$
5	6 - BA(1.0) + IBA(0.2)	11	IBA(0.5)
6	6 - BA(0.2) + IBA(0.5)	12	MSO

表 2 添加的外源激素浓度水平

培养基 编号	激素及配比 (mg/L)	培养基 编号	激素及配比 (mg/L)
1	IBA(0.25)	4	IAA(0.50)
2	IBA(0.50)	5	MS0
3	IAA(0.25)		

后调查生根率(%)、根数(条)、根长(mm)。

以上试验,每处理 4 瓶,每瓶接 5 个外植体,重复 3 次。培养条件为温度: (25 ± 2) $^{\circ}$ 、光照强度 2 000 lx、光照周期 16 h/d。

1.3 数据处理

数据用 Excel 2003 进行整理,用 DPS 7.0 进行数据分析。

2 结果与分析

2.1 不同取材与消毒方法对启动培养的影响

7月和4月在荒漠取的枝条,采用第1种消毒方案,随着消毒时间的增加消毒率呈逐渐上升趋势,成活率呈先微升后降趋势(表3)。2个时期采摘的枝条活性均较弱(表3),消毒时间在8~10 min 时,外植体基本褐化死亡,消毒时间在4~6 min 时,消毒不彻底,外植体污染严重。0.1% 氯化汞处理10 min 时,消毒率最高,7月下旬和4月上旬采取的枝条,消毒率分别高达91.67%和96.67%,可相对应的成活率却都为0;消毒6 min 时,2个时期的枝条成活率达到了各自的最高值,分别仅为5%和8.33%,相对应的消毒率分别为18.33%和21.67%。

4月采摘的荒漠枝条和种子发芽所得的实生苗采用 10%次氯酸钠进行消毒,随着消毒时间的增加,消毒率和成活率都呈逐渐上升趋势(表3)。种子发芽实生苗茎段灭菌效果和成活率远高于野外茎段,消毒 18 min 种子萌芽实生苗茎段的消毒率和成活率最高,分别达到 96.67%和 76.67%,而 4月野外茎段虽然也达到最高,但仅有 8.33%的消毒率和 5%的成活率。从试管苗生长状态看,种子萌发实生苗选取茎段灭菌获得的试管苗比荒漠枝条萌动快,生长的状态健康。

表 3 不同取材与消毒方案的结果

And a Library 2012 AND SECTION OF										
冰丰列	消毒时间	消毒率(%)		成活率(%)		6)	外植体状态			
消毒剂	(min)	7月	4 月	实生苗	7月	4 月	实生苗	7月枝条	4月枝条	实生苗
$0.1\%\mathrm{HgCl_2}$	4	0.00	1.67		0.00	1.67		有生长迹象	有生长迹象,缓慢	有生长迹象,缓慢
	6	18.33	21.67		5.00	8.33		慢慢黄化,不生长	慢慢黄化,不生长	
	8	53.33	53.33		3.33	1.67		部分逐渐褐化、死亡	部分逐渐褐化、死亡	
	10	91.67	96.67		0.00	0.00		快速褐化、死亡	快速褐化、死亡	
10% NaClO	7		0.00	0.00		0.00	0.00		消毒不彻底	消毒不彻底
	10		0.00	20.00		0.00	10		消毒不彻底	带有茎尖的拔节长高
	12		0.00	50.00		0.00	33.33		消毒不彻底	带有茎尖的拔节长高
	15		6.67	88.33		3.33	70.00		保持绿色,腋芽萌动	带有茎尖的拔节长高
	18		8.33	96.67		5.00	76.67		保持绿色,腋芽萌动	带有茎尖的拔节长高

2.2 不同激素配比对白刺增殖的影响

从表4可以看出,6号培养基(MS+6-BA 0.2 mg/L+IBA 0.5 mg/L)增殖系数最高,达4.08;其次是 MS+IBA 0.5 mg/L的 11号培养基,增殖系数达3.94,二者差异不显著;简化培养基 MSO 的增殖系数达2.36,显著低于6号和11号培养基,却显著高于其他激素组合。其余激素组合的增殖系数在1.05~1.45之间,增殖率均较低。从试管苗生长状态看,6号、11号和12号这3种培养基中茎段芽苗的增殖生长状态是健康的。

2.3 不同激素对白刺生根的影响

不同激素对白刺苗的生根效果见表 5。加入激素 0.25、0.5 mg/L IBA 的 1 号、2 号培养基生根率相对较高,分别达到 91.67% 和 96.67%,二者差异不显著,但显著高于加入 0.25、0.5 mg/L IAA 的 3 号、4 号培养基和简化培养基对白刺茎段的生根率。生根时间来看,加入 0.5 mg/L IBA 的 2 号培养基生根仅需 10~12 d,1 号、3 号、4 号培养基多在 18~25 d 生根。从生根数来看,茎段在加有激素的培养基上基本都是基部微膨大处长出 1 条粗根,只有在简化培养基 MSO 中培养的茎段是从基部直接长出 2~3 条又细又长的根。

表 4 不同激素对白刺增殖的影响

培养基	增殖系数	增殖状态
1	1.45c	偶丛生,生长慢,叶绿
2	$1.20 \mathrm{efg}$	偶丛生,生长慢,叶微黄
3	1.05g	少丛生,叶小,发黄
4	$1.26\mathrm{def}$	偶丛生,叶小,发黄
5	$1.42\mathrm{cd}$	偶丛生,有生长,叶绿
6	4.08a	丛生,拔节生长快,茎壮,叶绿
7	1.33cde	偶丛生,生长慢,叶黄白
8	1.07g	少丛生,生长慢,叶黄白
9	1.16fg	偶丛生,生长慢,叶黄白
10	1.19efg	偶丛生,生长慢,叶黄白
11	3.94a	生根,拔节生长快,茎壮,叶绿
12	2.36b	生根,拔节生长,茎细,叶绿

注:同列数据后不同小写字母表示在 0.05 水平上差异显著。

3 结论与讨论

无菌外植体的获得是组织培养的关键一步,其生长状态 直接影响到后续工作的开展。由于试验中采用的枝条来源于

培养基	生根时间 (d)	根数 (条)	平均根长 (mm)	生根率 (%)	根的状态
1	18 ~ 20	1	65 eC	91.67aA	基部微膨,生出1条主根,其上再生长若干细根
2	10 ~ 12	1	74bB	96.67aA	基部微膨,生出1条粗长主根,其上再长较多带绒毛细长根
3	23 ~ 25	1	$39\mathrm{dD}$	75.00bB	基部微膨大,生出1条主根,短粗,其上会再生长2~3条细根
4	18 ~ 20	1	$42\mathrm{dD}$	$68.33 \mathrm{bcB}$	基部膨大,生出1条主根,短粗,其上会再生长2~3条细根
5	> 20	2 ~ 3	89aA	65.00cB	基部直接生出几条主根,细而长

表 5 不同激素对白刺生根影响的结果

注:表中同列不同的小写、大写字母分别表示在5%、1%的水平下差异显著。

荒漠自然环境中,其表面和内生菌多而复杂,使得无菌外植体的获得比较困难。本试验结果表明,0.1% HgCl₂ 作为消毒剂,对复杂的菌群有很好的抑制作用,但同时也对外植体自身极易造成伤害,使得外植体褐化死亡,所以不是白刺野外茎段灭菌理想的消毒剂。10% NaClO 作为消毒剂,因其性质温和,对处理的外植体没有致死现象;也正是这个原因,其对于外界环境采摘的外植体灭菌效果不理想,但对于室内种子萌发获得的幼嫩实生苗茎段,灭菌处理 15 min 以上,就能达到理想效果,外界采摘的枝条比新生实生苗茎段木质化程度高,萌芽所需时间也长,生长相对较弱。因此本试验以种子室内发芽所得实生苗茎段为外植体,采用 10% NaClO 消毒 15~18 min灭菌效率最佳。

从增殖诱导的结果看,在加有激素 0.2 mg/L 6 - BA + 0.5 mg/L IBA 和 0.5 mg/L IBA 的培养基增殖效果较好,简化 MSO 培养基也有较好的增殖效果。这一结论与何正伦等结果^[19,22]不同,可能与所采用的外植体来源不同有关,虽然都是茎段,但是取自于室内种子萌发实生苗的茎段较外界生长的枝条茎段幼嫩,分生能力强,在 MSO 培养基上能够直接生根,再以拔节长高的方式生长,成为一种可取的简化增殖方式。而且由于简化 MSO 培养基采取的是自来水代替蒸馏水配制的培养基,市售白糖代替试验用蔗糖等措施,使得成本降低,同时培养基配制的操作上也有所简化,这对规模化生产具有十分积极的意义。

从生根诱导的处理结果看,在 1/2MS +0.5 mg/L IBA 培养基中生根效果最好,不但生根快,而且根粗壮,这与孙雪新等的结果^[13]相同。在本试验中,简化 MSO 培养基中也能够直接生根,只是带顶芽的茎段生根更容易。

本试验认为比较适宜的消毒方案是 10% NaClO 对室内种子萌发获得的实生苗茎段消毒 $15\sim18$ min; 比较适宜的增殖培养基是 MS + 0.2 mg/L 6-BA+0.5 mg/L IBA 或 MS + 0.5 mg/L IBA; 比较适宜的生根培养基是 1/2MS + 0.5 mg/L IBA。

在本试验中,白刺的茎段在简易培养基 MSO 中也能健康增殖生长,这使得组培中不同品种所需激素种类不同的这一局限性有所缓和,这也为今后对不同品种的白刺进行初步再生体系的建立提供参考。

参考文献:

- [1]张建锋,张旭东,周金星,等. 世界盐碱地资源及其改良利用的基本措施[J]. 水土保持研究,2005,12(6):28-30.
- [2]郭忠意. 盐胁迫对苦楝育苗及生理特性的影响[D]. 南京:南京

林业大学,2009.

- [3]李 红,章英才,张 鹏. 白刺属植物研究综述[J]. 农业科学研究.2006.27(4).61-64.
- [4]常艳旭,苏格尔,王迎睿. 白刺属野生植物的开发利用价值[J]. 内蒙古科技与经济,2005,(14);21-23.
- [5]王彦雕. 锁阳、白刺种子萌发及其寄生关系的建立[D]. 兰州:甘肃农业大学,2012.
- [6]何斌琼,杨海萍,朱文碧,等. 天津野生白刺再生体系的建立[J]. 北方园艺,2010(10):159-161.
- [7]郭晔红, 蔺海明, 武 睿. 唐古特白刺组织培养及其培养基筛选研究[J]. 草业学报, 2009, 18(6); 59-64.
- [8]李双福,张启昌,张起超,等. 白刺属植物研究进展[J]. 北华大学学报:自然科学版,2005,6(1):78-81.
- [9]王瑞萍. 白刺属两种植物的种子萌发特性及幼苗耐盐性的研究 [D]. 呼和浩特:内蒙古大学,2010.
- [10]任 珺,陶 玲. 甘肃省白刺属植物的数量分类研究[J]. 西北植物学报,2003,23(4):572-576.
- [11] 左凤月. 盐胁迫对 3 种白刺生长、生理生化及解剖结构的影响 [D]. 重庆; 西南大学, 2013.
- [12]高海宁. 白刺属植物遗传多样性的 ISSR 分析[D]. 兰州: 兰州 大学, 2007.
- [13] Tulyaganov T S, Allaberdiev F K H. Alkaloids of Nitraria sibirica: Dihydroschoberine and nitrabirine N - oxide [J]. Chemistry of Natural Compounds, 2001, 37 (6):556-558.
- [14] Tulyaganov T S, Makhmudov. Alkaloids of *Nitraria komarovii*: *N* allylnitrarine and komarovidine *N* oxide [J]. Chemistry of Natural Compounds, 2000, 36 (4):396 398.
- [15]孙雪新,何正伦. 白刺组织培养研究[J]. 中国沙漠,1992,12 (3):28-31.
- [16] 王晨霞,陈贵林. 西伯利亚白刺的组织培养与快速繁殖[J]. 植物生理学通讯,2007,43(6);1143-1144.
- [17]张红晓,康向阳. 白刺组织培养技术的研究[J]. 西北植物学报, 2004,24(1):56-64.
- [18] 王尚德. 唐古特白刺优株选择与组织培养研究[D]. 北京:北京 林业大学,2005.
- [19]何正伦. 白刺离体培养技术的研究[J]. 甘肃林业科技,1998, (3):6-9.
- [20] 余桂红,张 旭,孙晓波,等. 大麦苏啤 4 号幼胚愈伤组织的诱导及植株的高频再生[J]. 江苏农业学报,2013,29(5):953-956.
- [21] 石 虎,杨永智,周 云,等. 马铃薯新品种青薯 9 号高效再生体系的建立[J]. 江苏农业科学,2013,41(5):14-19.
- [22]张红晓,康向阳,沈 燕,等. 白刺组织快繁的研究[J]. 经济林研究,2003,21(4):60-63.