王克磊,朱隆静,陈先知,等. 潮汐灌溉不同灌水量对黄瓜苗期生长发育的影响[J]. 江苏农业科学,2015,43(10):197-198. doi:10.15889/j. issn. 1002-1302.2015.10.062

潮汐灌溉不同灌水量对黄瓜苗期生长发育的影响

王克磊,朱隆静,陈先知,史建磊,徐 坚

(浙江省温州市农业科学研究院/浙江省温州市设施蔬菜工程技术中心,浙江温州 325014)

摘要:以黄瓜为材料,设置了每个潮汐式托盘3.0、3.5、4.5、6.5 L 共4种灌水量处理,研究了潮汐灌溉不同灌水量对黄瓜苗期生长的影响。结果表明:4.5 L 灌水量处理的植株高度适中,茎粗和植株干物质含量最高,壮苗指数为0.0201。4.5 L 灌水量处理,可以作为灌水量调控的一个指标。

关键词:黄瓜:潮汐灌溉:牛理:灌水量:牛长发育

中图分类号: S642.207 文献标志码: A 文章编号:1002-1302(2015)10-0197-02

潮汐灌溉育苗起源于设施园艺发达的荷兰,在生产中已 得到了广泛的应用。潮汐灌溉系统是根据潮水起落原理设计 的一种节水、高效、省工的灌溉系统,适用于各种盆栽植物和 容器育苗的管理,可以有效地提高水资源和营养液的利用 率[1-2],具有节水、提升作物生长速率、促进植株根系吸收营 养、降低苗床湿度等优点[3-4]。但是目前国内外提供的潮汐 灌溉系统设备大多采用整体式潮汐灌溉水槽,此种系统对苗 床平整度要求较高,要确保苗床密封不漏水,施工难度大,需 要专业安装, 造价高达 260 元/m² 以上, 一般用户难以承受, 大面积推广非常困难。浙江省温州市农业科学院蔬菜科学研 究所与温州蓝丰农业科技中心合作开发的托盘式潮汐育苗设 备,通过对常规设备和方法进行优化,用潮汐式灌溉专用托盘 (以下简称潮汐盘)代替整体式潮汐灌溉水槽,用小单元底部 供水代替大床供水,造价从常规的 260 元/m² 降到约 24 元/m²,大幅度节约设施成本,为底部灌溉技术在种苗产业 上的大面积应用提供了可能。使用托盘式潮汐灌溉技术,既 有植床式潮汐灌溉的效果,又从设备和技术理念上提升简化, 是蔬菜育苗灌溉技术的一大突破,使农民在育苗上真正用得 起,育出优质苗,为蔬菜优质高产打下基础。本试验以黄瓜为 材料,研究利用潮汐盘育苗不同灌水量对黄瓜幼苗生长发育 的影响,旨在摸清潮汐盘的使用方法和使用过程中水分的挖 制标准。

1 材料与方法

1.1 潮汐育苗盘介绍

温州市农业科学研究院蔬菜科学研究所设计的潮汐式灌溉专用托盘,包括方形底盘、方形底盘四周向上延伸的边沿构成的盘壁,方形底盘上设置有多个加强筋,多个加强筋在方形底盘宽度方向上相互平行,在方形底盘长度方向上线形排列,加强筋与加强筋形成的凹陷部分纵横相连,形成导流水槽。

收稿日期:2014-10-08

方形底盘上设置有在方形底盘宽度方向上相互平行、在方形底盘长度方向上线形排列的加强筋,用来支撑使用过程中放置在上面的栽培容器(穴盘),同时加强整个潮沙式灌溉专用托盘在长度方向的强度;凸陷部分纵横相连,形成导流水槽,有利于潮沙盘内的水流通和空气流通,防止烂根。

1.2 供试材料

供试黄瓜品种为超美特(温州市农业科学研究院选育); 育苗基质为浙江锦大绿公司生产的育苗基质。试验于2014年3—5月在温州市农业科学研究院蔬菜研究所玻璃温室内进行。

1.3 试验设计

种子于 4 月 10 日经 55 ℃温汤浸种后直接播于 50 孔育苗穴盘中,然后将穴盘放入自行研发的潮汐式托盘中,每个潮汐式托盘中放 3 个穴盘。4 月 20 日黄瓜子叶展平后开始进行水分处理。试验设置 4 个水分梯度,分别为每个潮汐式托盘中灌水 3.0、3.5、4.5、6.5 L,将水直接灌至潮汐式托盘中。每个处理 3 次重复,每个重复 3 个穴盘。5 月 8 日统一进行取样测定,包括植株株高、茎粗、叶片数、地上部鲜质量及干质量、地下部鲜质量及干质量等指标,SOD(超氧化物歧化酶)、POD(过氧化物酶)、CAT(过氧化氢酶)、GSH(谷胱甘肽)等生理指标均采用试剂盒测定,试剂盒购于苏州科铭生物技术有限公司。

2 结果与分析

2.1 不同灌水量处理对黄瓜幼苗生长发育的影响

由表1可见,不同灌水量处理下植株的表现状态差异显著。株高随着灌水量的增加而逐渐增高,6.5 L处理的植株株高最高,达到19.89 cm,比3.0 L处理增加112.9%,不同处理之间差异显著。茎粗以4.5 L处理的植株最大,为0.421 cm,显著大于其他处理,并呈现先增大后减小的趋势。地上部鲜质量和干质量随着水分的不断增加而显著增大,均以6.5 L处理最大,显著大于其他几个处理。地下部鲜质量和干质量呈现先增大后减小的趋势,以4.5 L处理最大。

2.2 不同灌水量处理对黄瓜苗期生理特性的影响

不同灌水量处理对黄瓜苗期生理特性的影响差异显著。 从表2可以看出,随着灌水量的增加,黄瓜叶片 CAT 活性和

基金项目:现代农业产业技术体系项目(编号: CARS - 25 - G - 17); 浙江省温州市科技计划(编号: X2011T010)。

作者简介:王克磊(1982—),男,山东烟台人,硕士,讲师,研究方向为 设施蔬菜生理生态。E-mail:wangklwz@qq.com。

GSH 含量呈现先降低后升高的趋势, CAT 活性和 GSH 含量分别在 4.5 L、3.5 L 处理最低, 分别为 4 324.96 U/g 鲜质量和 14.20 μmol/g, 目各处理间差异显著。SOD 活性在最低的灌

水量处理下有所增加,3.0 L 处理较3.5 L 处理增加13.99%。叶片 POD 的活性以4.5 L 处理最低,为3 830.42 U/g 鲜质量,不同处理间差异显著。

王 1	不同灌水量外理对黄瓜苗期生长发育的影响
7 ⊽ I	小间准从单外堆划用从用册十大及目的影响

- 灌水量 (L)	株高 (cm)	茎粗 (cm)	叶片数 (张)	地上部鲜质量 (g)	地下部鲜质量 (g)	地上部干质量 (g)	地下部干质量 (g)
3.0	9.34d	0.321c	3.0	4.958d	1.024c	0.398d	0.076c
3.5	13.37c	0.385b	3.0	5.493c	1.453a	0.427c	0.088c
4.5	15.80b	0.421a	4.0	8.273b	1.560a	0.618b	0.138a
6.5	19.89a	0.379b	4.0	9.607a	1.253b	0.834a	0.113b

注:同列不同小写字母表示差异显著(P<0.05)。下同。

表 2 不同灌水量处理对黄瓜苗期生理特性的影响

灌水量 (L)	SOD 活性 (U/g 鲜质量)	POD 活性 (U/g 鲜质量)	CAT 活性 (U/g 鲜质量)	GSH 含量 (μmol/g)
3.0	23.70a	7 953.29a	4 324.96a	20.07a
3.5	20.79c	3 916.01c	2 933.02b	14.20c
4.5	$21.70 \mathrm{bc}$	3 830.42d	1 871.28d	14.94c
6.5	22.54b	6 469.63b	2 839.46c	16.87b

2.3 不同灌水量次数及壮苗指数比较

在整个试验过程中,统一灌水 4 次,灌水总量分别为 12、14、18、26 L,从壮苗指数来看,以 4.5 L处理的壮苗指数最高,为 0.020 1,显著高于其他处理,最低的为 3.0 L处理(表 3)。

表3 不同灌水量次数及壮苗指数比较

· 灌水量 (L)	灌水次数 (次)	灌水总量 (L)	壮苗指数
3.0	4	12	0.014 8b
3.5	4	14	$0.016~2\mathrm{b}$
4.5	4	18	0.020 1a
6.5	4	26	0.018 0b

3 讨论与结论

试验结果表明,底部灌溉不同灌水量处理,通过调控黄瓜穴盘苗水分的不同而显著影响幼苗生长,穴盘苗育苗过程中可控的环境因素很多,但水分的控制效果较为明显。当灌水量达到 4.5 L 时,植株高度适中,无明显徒长现象,茎粗和地上部的干鲜质量及壮苗指数等指标均为最高,黄瓜幼苗的生长状况最好。当灌水量达到 6.5 L 时,虽然植株高度显著增高,但茎粗和地下部干鲜质量都显著下降,幼苗表现徒长,说明灌水量过多虽然会促进植株茎叶的生长,但会明显抑制根系的发育。

植物体内存在清除活性氧的各种酶类系统,其中 SOD、POD 和 CAT 就是一类主要的保护酶类^[5-6]。一般情况下植株体内活性氧的产生与清除保持平衡状态。在遇到胁迫条件(如干旱或者湿涝)等逆境条件下,平衡即会被打破,活性氧便在植物体内大量而迅速积累,加剧膜脂过氧化作用^[7-8],细胞膜遭到破坏,植株细胞衰老和解体加速,进而使叶片衰老,引起脱落、死亡。本研究结果表明,在同一灌水时间处理上,3.0 L灌水量处理时,表现供水不足,植株出现叶片萎蔫的状态,表明其处于干旱胁迫的状态,因此导致叶片中 SOD、POD、

CAT 活性提高。3 种酶类相比,干旱使 POD 和 CAT 活性提高幅度大于 SOD,表明 POD 和 CAT 对干旱胁迫反应更敏感。而在6.5 L处理时,植株叶片 POD 和 CAT 活性的增幅小于3.0 L处理,表明黄瓜对干旱胁迫的反应要高于湿涝胁迫,在4.5 L处理下,植株各酶活性没有显著增加,且植株未出现湿涝或者干旱胁迫。

从4种灌水量处理的试验结果来看,4.5 L灌水量处理的植株高度适中、茎粗和植株干物质含量最高,壮苗指数也最大。3.0 L灌水量处理和6.5 L灌水量处理植株都表现一定的胁迫状态,保护酶活性较4.5 L处理均有不同程度增大,而且壮苗指数也有较大差别。综合来看,4.5 L灌水量处理可以作为灌水量调控的一个指标。

参考文献:

- [1] 马福生,刘洪禄,杨胜利,等. 无土盆栽红掌潮汐灌溉技术[J]. 农业工程学报,2012,28(24):115-120.
- [2]任建华. 水和营养液的潮汐式灌溉[J]. 节水灌溉,2004(3): 49-50.
- [3] 张晓文, 田 真, 刘文玺, 等. 潮汐式灌溉系统的研发与推广[J]. 农业工程, 2011(1):80-83.
- [4] 张 黎,王 勇. 盆栽八仙花潮汐灌溉栽培试验初探[J]. 北方园艺,2011(20):77-79.
- [5]张小娟,宋 涛,甄晓辉,等.模拟干旱胁迫对转 C₄ 双基因水稻 幼苗光合功能及部分抗氧化酶活性的影响[J]. 江苏农业学报, 2014,30(4):709-715.
- [6]邹英宁,彭军荣. NaCl 胁迫对金柑组培苗生长、根系形态和抗氧化的影响[J]. 江苏农业科学,2013,41(4):154-155.
- [7] 齐海鹰,张淑霞,宋朝玉,等. 不同基质和供水方式对基质理化特性和一品红观赏品质的影响[J]. 植物资源与环境学报,2009,18 (3):74-80.
- [8]马福生,刘洪禄,吴文勇,等. 不同灌水下限对设施滴灌无土栽培 红掌水分利用和生长的影响[J]. 农业工程学报,2012,28(8): 65-70.