贾昌路,张锐利,张 宏,等. 新疆阿克苏地区核桃品质分析[J]. 江苏农业科学,2016,44(4):351-354. doi:10.15889/j.issn.1002-1302.2016.04.100

新疆阿克苏地区核桃品质分析

贾昌路^{1,2}, 张锐利³, 张 宏⁴, 徐崇志¹, 高 山², 张 琦², 张 锐^{1,3}

(1. 新疆生产建设兵团塔里木盆地生物资源保护利用重点实验室,新疆阿拉尔 843300; 2. 塔里木大学植物科学学院,新疆阿拉尔 843300; 3. 塔里木大学生命科学学院,新疆阿拉尔 843300; 4. 塔里木大学机械电气化工程学院,新疆阿拉尔 843300)

摘要:对新疆阿克苏地区新新 2、纸皮、温 138、新翠丰、温 185 等 5 个核桃品种的营养品质进行测定。结果表明:5 个核桃品种的蛋白质含量无显著差异,脂肪含量均存在极显著差异(P<0.01),温 185 含油率最高,其次是纸皮,新翠丰最低,但油脂中含有较高的不饱和脂肪酸、维生素 E;新翠丰碘价显著高于纸皮、新新 2、温 185(P<0.05),进一步说明其油脂中不饱和脂肪酸含量高;温 138 中还原糖、总糖含量最高,纸皮次之;新新 2 单宁含量相对较低,涩味较轻,而新翠丰单宁含量较高,涩味较重;新翠丰总多酚含量较高,抗氧化性能较高,纸皮次之。纸皮不饱和脂肪酸含量、维生素 E含量较高,抗氧化性能较好,商品一致性较好,综合品质较好,是值得大量推广的品种。

关键词:核桃;品质;脂肪;脂肪酸;维生素 E;蛋白质;碘价

中图分类号: S664.103.3 文献标志码: A 文章编号: 1002-1302(2016)04-0351-04

核桃(Juglans regia L.)别称胡桃、羌桃,属胡桃科胡桃 属,是多年生落叶果,与扁桃、腰果、榛子并列为世界著名的 "四大干果",有"木本油料王"之称。核桃是公认的优质植物 蛋白资源,核桃蛋白的营养价值与动物蛋白相近[1]。此外, 核桃还是主要的油料树种,含油量在60%以上,含有较多的 不饱和脂肪酸,如亚油酸、亚麻酸等。这些不饱和脂肪酸是人 体必需的脂肪酸,具有保护大脑及神经系统、降低血液胆固醇 含量、预防心血管疾病等功效[2-3]。此外,核桃坚果还含有油 酸、棕榈酸、硬脂酸等,不同核桃品种间脂肪酸含量存在显著 差异[4-7]。核桃中除了含有丰富的油脂外,还含有酚类化合 物、多种维生素及矿质元素等,被广泛认为是天然滋补品[8]。 酚类化合物中,单宁是一种具有沉淀蛋白质性质的水溶性多 酚类化合物,多酚类物质对核桃仁起到防止氧化的作用,同时 对人体也有积极的抗氧化作用。维生素中,维生素 E 又被称 为生殖维生素、抗不生育酸、孕维生素等,是具有α-生育酚 生物活性的一类物质,包括生育三稀酚类、生育酚类2大类共 8 种,其中 4 种生育酚分别是 $\alpha \setminus \beta \setminus \gamma \setminus \delta$ 型,4 种生育三稀酚分 别是 α 、 β 、 γ 、 δ 型。天然维生素 E 中, α - 生育酚的生理活性 最高,它们都具有抗氧化功能,是主要的抗氧化剂之一,也是 人体生长生育不可或缺的营养物质[9-10]。本研究以新疆阿 克苏地区5个主栽核桃品种为试材,对核桃中碳水化合物、膳 食纤维、蛋白质、酚类物质、含油率、油脂中的脂肪酸、维生素 E 含量进行了测定分析,综合评价各品种内在品质特性,以期

收稿日期:2015-03-26

基金项目:兵团博士资金(编号:2011BB006);华中农业大学、塔里木大学科研联合基金(编号:HNTDLH1401);兵团少数民族聚居团场科技特派员科技帮扶项目(编号:2013AA002);兵团工业攻关项目(编号:2014BA014)。

作者简介:贾昌路(1991一),男,新疆塔城人,硕士研究生,主要从事 核桃露仁分子机理研究。

通信作者:张 锐,博士,副教授,主要从事核桃高产栽培机理及分子育种研究。E-mail:843037930@qq,com。

为今后新疆选育优质核桃资源提供科学依据。

1 材料与方法

1.1 研究区域气候条件

核桃在年平均温度 9~12 ℃的环境下适宜生长。阿克苏地区属暖温带大陆性干旱气候,气候干燥,降水量少,是全国同纬度地域中日照时间最长、昼夜温差最大的地区,无霜期为 180~225 d,年日照时数为 2 750~3 030 h,年平均气温为 7.9~11.2 ℃,核桃生长季(4—10 月)平均气温为 16.7~19.8 ℃,5 ℃以上的年平均日数在 210 d 以上,该地区充足的光热资源完全可以满足核桃生长对光热条件的需求[11]。

1.2 试验材料

以阿克苏地区温宿县木本粮油林场栽培的温 138、新翠丰、温 185、新新 2、纸皮等 5 个核桃品种为试验材料。于 2012年 9 月采样,每个品种采取 30 个果实,每个处理重复 3 次。

1.3 主要仪器

Thermo 型高速冷冻离心机; UV - 1800 型紫外可见分光光度计; GC - 2014C 型岛津气相色谱仪; AOC - 20i 型进样器; 微量进样器; 安捷伦牌石英玻璃毛细管柱(柱长 30 m,柱径 0.25 mm, 液膜厚度 0.25 μm); LC - 20A 型岛津液相色谱; SPD - M20A 型检测器。

1.4 测试方法

还原糖含量测定采用3,5 - 二硝基水杨酸法^[12];总糖、纤维素含量测定采用蒽酮比色法^[13];蛋白质含量测定采用考马斯亮蓝 G250 染色法^[14];脂肪含量测定采用索氏提取法^[15];脂肪酸组成及含量测定采用气相色谱分析法^[3];油脂碘价测定采用 Hanus 法^[16];维生素 E 含量测定采用高效液相色谱分析技术^[9];总酚含量测定采用普鲁士蓝法^[17];总抗氧化性能测定参见房祥军等的方法^[18];单宁含量测定采用分光光度法^[19]。

1.5 数据分析

试验数据分析和制图采用 Excel 2003、DPS 7.05 统计软

件分析。

2 结果与分析

2.1 不同核桃品种碳水化合物、膳食纤维含量分析

糖是人体必需的一种营养素,糖被人体吸收后马上转化 为碳水化合物,为人体提供能量。糖主要分为单糖和双糖,大 多数单糖是还原糖。 由表1可知,温185的还原糖含量最低,为0.588%,温138的还原糖含量最大,为0.665%。5个核桃品种的还原糖含量变异系数由小到大依次为新翠丰<温138<新新2<纸皮<温185,新翠丰、温138的还原糖含量变异系数较小,说明其商品—致性较高。温185的还原糖含量变异系数相对较大,说明其遗传多样性较丰富,商品—致性较差。方差分析表明,5个核桃品种的还原糖含量无明显差异。

表 1 5 个核桃品种的碳水化合物含量及变异系数

D 44	还原糖		总糖		纤维素	
品种	含量(%)	变异系数(%)	含量(%)	变异系数(%)	含量(%)	变异系数(%)
温 38	0.665aA	5.549	0.499abA	3.325	0. 270aA	5.319
新翠丰	0.614aA	2.202	0.600aA	3.295	0.254aA	10.719
纸皮	0.663aA	41.975	$0.456 \mathrm{bA}$	17.544	0.256aA	1.665
温 85	0.588aA	58.284	$0.487 \mathrm{bA}$	1.422	0.254aA	6. 195
新新2	0.614aA	15.945	0.533abA	12.596	0.170bB	4.114

注:同列数据后不同大写字母、小写字母分别表示在 0.01、0.05 水平上差异显著。下表同。

5 个核桃品种中,新翠丰总糖含量最高,为 0.600%;纸皮总糖含量最低,为 0.456%。温 138、新翠丰、温 185 的总糖含量变异系数较小,说明其商品一致性较好。方差分析表明,新翠丰的总糖含量与温 185、纸皮存在显著差异(*P* < 0.05)。

5 个核桃品种中,新新 2 的纤维素含量最低,为 0.170%; 温 138 的纤维素含量最高,为 0.270%。纤维素含量变异系数由小到大依次为纸皮 < 新新 2 < 温 138 < 温 185 < 新翠丰。纸皮的纤维素含量变异系数相对较小,说明其商品一致性较高。新翠丰的纤维素含量变异系数相对较大,说明其遗传多样性较丰富,商品一致性较差。方差分析表明,新新 2 与其他4 个核桃品种的纤维素含量存在极显著差异(P < 0.01)。

2.2 不同核桃品种蛋白质、酚类物质含量分析

核桃蛋白含有 18 种氨基酸,包括人体必需的 8 种氨基酸,且精氨酸、谷氨酸、组氨酸、酪氨酸等含量相对较高,接近联合国粮农组织(FAO)和世界卫生组织(WHO)规定的标准,是一种很好的植物蛋白[1]。蛋白质对人体具有多种作用:构

成人体内的酶、激素、抗体等;维持正常的血浆渗透压,使血浆和组织之间的物质交换保持平衡;维持肌体的酸碱平衡;供给肌体能量;运输氧气及营养物质;构成、修复各种组织细胞等。多酚是在植物性食物中被发现的具有潜在促进健康作用的化合物。它存在于一些常见植物性食物,其含量与植物抗氧化能力有关。抗氧化能力越强,核桃仁越不容易被氧化。单宁含量会影响果实口感,单宁含量少,果实涩味轻,反之果实涩味重。

由表 2 可知,在 5 个核桃品种中,新新 2 蛋白质含量最高,为 0.945 mg/g,温 138 蛋白质含量最低,为 0.710 mg/g。蛋白质含量变异系数由小到大依次为温 138 < 温 185 < 纸皮 < 新翠丰 < 新新 2,温 138 蛋白质含量的变异系数较小,说明其商品一致性较高。新新 2 蛋白质含量的变异系数较大,说明其遗传多样性较丰富,商品一致性较差。方差分析表明,5 个核桃品种间蛋白质含量无显著差异。

表 2 不同核桃品种蛋白质、酚类物质含量及变异系数

D 144	蛋	蛋白质		总多酚		单宁	
品种	含量(mg/g)	变异系数(%)	含量(mg/g)	变异系数(%)	含量(mg/g)	变异系数(%)	
温 138	0.710aA	4.675	$0.050\mathrm{dD}$	0.703	$0.570\mathrm{dD}$	0.574	
新翠丰	0.883aA	24.437	0.095aA	0.172	0.649bB	0.606	
纸皮	0.894aA	20.011	$0.079 \mathrm{bB}$	0.300	0.801aA	0.339	
温 185	0.870aA	12.236	0.053eC	0.285	$0.610 \mathrm{cC}$	0.634	
新新2	0.945aA	27.415	$0.038\mathrm{eE}$	0.208	0.490eE	0.115	

新翠丰总多酚含量最高,为0.095 mg/g,新新2 总多酚含量最低,为0.038 mg/g。5 个核桃品种总多酚含量变异系数由小到大依次为新翠丰<新新2<温185<纸皮<温138,新翠丰总多酚含量变异系数较小,说明其商品一致性较高。温138 总多酚含量变异系数较大,说明其遗传多样性较丰富,商品一致性较差。方差分析表明,各核桃品种总多酚含量间存在极显著差异(P<0.01)。总多酚含量与抗氧化能力呈正比,总多酚含量越高,抗氧化能力越强,因此5 个核桃品种的抗氧化能力从大到小依次为新翠丰>纸皮>温185>温138>新新2,新翠丰的总抗氧化能力远高于新新2,说明新翠丰更易于储存。

在 5 个核 桃品 种中,新新 2 单宁含量最低,为 0.490 mg/g,口感涩味较其他核桃品种轻;纸皮单宁含量最高,为 0.801 mg/g,口感涩味较其他核桃品种重。单宁含量变异系数由小到大依次为新新 2 <纸皮 <温 138 <新翠丰 <温 185,新新 2 单宁含量变异系数相对较小,说明其商品一致性较高。温 185 单宁含量的变异系数相对较大,说明其遗传多样性较丰富,商品一致性较差,对其销售有一定影响。方差分析表明,5 个核桃品种单宁含量间存在极显著差异(P < 0.01)。

2.3 不同核桃品种脂肪及油脂碘价含量分析

由表 3 可见, 温 185 脂肪含量最高, 为 62.670%, 新翠丰

脂肪含量最低,为31.876%。5个核桃品种脂肪含量变异系数由小到大依次为温185<纸皮<温138<新翠丰<新新2,温185脂肪含量变异系数相对较小,说明其商品一致性较高。新新2脂肪含量变异系数相对较大,一方面说明其具有较丰富的遗传多样性,另一方面说明其商品一致性较差,对其销售和加工有一定影响。方差分析表明,5个核桃品种脂肪含量间均存在极显著差异(P<0.01)。

表 3 不同核桃品种脂肪含量、碘价及变异系数

品种	J	脂肪	碘价		
пп /т т	含量(%)	变异系数(%)	浓度(g I/100g)	变异系数(%)	
温 138	35.453dD	3.645	24. 297bA	1.882	
新翠丰	$31.876\mathrm{eE}$	3.672	25.513aA	2.942	
纸皮	50.181bB	1.951	24.456bA	0.811	
温 185	62.670aA	1.202	21.482cB	1.846	
新新2	40.386eC	4.015	$20.953\mathrm{cB}$	3.042	

碘价反映了核桃油脂中不饱和脂肪酸含量高低,碘价越高,说明核桃油脂中不饱和脂肪酸含量越高。表3表明,新新2碘价最低,为20.953 gL/100g,新翠丰碘价最高,为25.513 gL/100g。5个核桃品种碘价变异系数由小到大依次为纸皮<温185<温138<新翠丰<新新2,纸皮碘价变异系数相对较小,说明其商品—致性较高。新新2碘价变异系数相对较大,一方面说明其具有较丰富的遗传多样性,另一方面

说明其商品一致性较差。方差分析表明,新翠丰碘价显著高于纸皮、温 138(P < 0.05),极显著高于新新 2、温 185(P < 0.01);纸皮、温 138 碘价间无显著差异,但其碘价均极显著高于温 185、新新 2(P < 0.01),说明新翠丰、纸皮、温 138 油脂中不饱和脂肪酸含量高,新新 2 油脂中不饱和脂肪酸含量低。2.4 不同核桃品种脂肪酸组成与含量分析

通过对供试材料油脂进行分析,发现核桃油脂中存在18种脂肪酸,分别是辛酸、癸酸、月桂酸、十三烷酸、肉豆蔻酸、肉豆蔻稀酸、十五烷酸、棕榈酸、棕榈油酸、十七烷酸、硬脂酸、油酸、亚油酸、花生酸、顺式-11-二十碳烯酸、亚麻酸、山嵛酸、芥酸。但是由于样品本身差异,不是所有样品油脂中都含有上述18种脂肪酸。其中温138缺少肉豆蔻稀酸;温185、新新2缺少月桂酸、肉豆蔻稀酸;新翠丰、纸皮缺少月桂酸、肉豆蔻稀酸、芥酸。在18种脂肪酸中,含量普遍高于0.05%的有8种脂肪酸(表4)。

由表 4 可知,5 个核桃品种的核桃油中脂肪酸主要是由亚油酸、油酸、花生酸、棕榈酸、硬脂酸组成,其含量高低顺序为亚油酸 > 油酸 > 花生酸(温 185、新新 2 除外) > 棕榈酸 > 硬脂酸。亚油酸含量占脂肪含量的近 60%,油酸含量占脂肪含量的 17.03%;花生酸含量平均为脂肪含量的 11.99%;而棕榈油酸、亚麻酸、顺式 - 11 - 二十碳烯酸所占比例很小,此外还含有其他油脂酸,但含量极少。

表 4 不同品种核桃油的脂肪酸组成及含量

品种		含量(%)						
	棕榈酸	棕榈油酸	硬脂酸	油酸	亚油酸	花生酸	亚麻酸	顺式 -11 - 二十碳烯酸
温 138	7.07	0.08	2.13	15.70	62.53	11.84	0.16	0.10
新翠丰	6.08	0.06	2.34	22.09	59.99	9.03	0.18	0.07
纸皮	5.47	0.06	1.91	21.10	58.21	10.85	2.04	0.08
温 185	6.58	0.06	2.12	13.87	62.77	14.00	0.15	0.09
新新2	6.92	0.08	2.04	12.39	63.71	14.27	0.19	0.22

在核桃油脂中存在的 18 种脂肪酸中,辛酸、癸酸、月桂酸、十三烷酸、肉豆蔻酸、十五烷酸、棕榈酸、十七烷酸、硬脂酸、花生酸、山嵛酸等 11 种脂肪酸为饱和脂肪酸;肉豆蔻稀酸、棕榈油酸、油酸、亚油酸、顺式 -11 -二十碳烯酸、亚麻酸、芥酸等 7 种脂肪酸为不饱和脂肪酸。

由表 5 可知,在 5 个核桃品种中,不饱和脂肪酸含量远高于饱和脂肪酸,占总脂肪含量的 79.22%。新翠丰核桃油中不饱和脂肪酸含量最高,其次是纸皮核桃油,新新 2 核桃油中不饱和脂肪酸含量最低。

表 5 不同品种核桃油的脂肪酸含量

D 14h	含量(%)				
品种	饱和脂肪酸	不饱和脂肪酸			
温 138	21.43	78.57			
新翠丰	17.61	82.39			
纸皮	18.52	81.48			
温 185	22.91	77.09			
新新2	23.41	76.59			
平均值	20.78	79.22			

2.5 不同核桃品种维生素 E 含量分析

维生素 E 是一种脂溶性维生素,别称生育酚,是防止油脂氧化酸败的天然抗氧化剂。其对人体有重要作用:可有效

增加维生素 A 的吸收;可延缓衰老,减少皱纹产生;有抗氧化能力,可使人保持健康体魄;能够减轻疲劳,活络筋骨,避免腿脚僵硬;预防冠心病、动脉粥样硬化、癌症、脱发症、高血压等多种疾病;加速伤口愈合,减少疤痕及其色素沉着;提高人类生育能力。

由表 6 可知,新翠丰、纸皮、温 185、温 138、新新 2 核桃油中维生素 E 含量分别为 4.811 5、4.465 3、1.615 3、0.902 6、0.504 8 mg/g。 其中温 138、温 185 的维生素 E 主要是 α - 生育酚;新翠丰、纸皮、新新 2 的维生素 E 主要是 γ - 生育酚。在各核桃油中, β - 生育酚、 δ - 生育酚含量极少,说明在核桃油中维生素 E 的主要存在类型为 α - 生育酚、 γ - 生育酚。新翠丰核桃油维生素 E 含量最多,说明其油脂不容易被氧化酸败;纸皮次之,新新 2 核桃油中维生素 E 含量最低,其油脂较其他品种的油脂易氧化酸败。

3 结论与讨论

3.1 讨论

脂肪、蛋白质是核仁中的主要营养成分,此外核仁中还含有其他一些成分,如碳水化合物及多酚类物质等。脂肪中含有的脂肪酸主要是由饱和脂肪酸、不饱和脂肪酸组成^[20-21],其中不饱和脂肪酸中的亚油酸、α-亚麻酸是人体必需的 2 种

表 6 不同品种核桃油的维生素 E 类型及含量

品种	维生素 E 含量(mg/g)						
	α 型含量	β型含量	γ 型含量	δ 型含量	总量		
温 138	0.8367	0.032 7	0.021 3	0.0119	0.902 6		
新翠丰	0.8264	0.068 3	3.9113	0.005 5	4.8115		
纸皮	0.7894	0.045 0	3.627 0	0.0039	4.465 3		
温 185	1.520 2	0.0407	0.047 8	0.0066	1.615 3		
新新2	0.177 8	0.097 0	0.183 9	0.046 1	0.5048		

脂肪酸,主要作为前列腺素、EPA、DHA等重要代谢产物的前体化合物,对于维持人体健康、调节生理机能有重要作用^[22]。核桃仁中还含有丰富的多酚类物质,研究表明,核桃仁中多酚类物质主要是没食子酸、鞣花酸单体、鞣花单宁等。现代药理试验表明,多酚类物质、黄酮类物质是具有生理活性的物质,酚类物质对人体有抗氧化性、抗诱变性、清除自由基的作用。

温 185 的脂肪含量较高,不饱和脂肪酸含量较低,糖含量相对较高;纸皮脂肪含量仅次于温 185,但其不饱和脂肪酸含量比温 185 高;新翠丰脂肪含量最低,但油脂中不饱和脂肪酸含量高于其他核桃品种;新翠丰油脂中维生素 E 含量最高,纸皮次之,新新 2 最低。

对于糖类物质,温 138 还原糖、纤维素含量最高,纸皮次之,温 185 最低;新翠丰总糖含量最高,纸皮最低;各核桃品种蛋白质含量无显著差异,单宁含量存在极显著差异,纸皮单宁含量最高,其次为新翠丰,新新 2 单宁含量最低,涩味口感较轻,这与种间的差异性有一定关系。就总多酚和总抗氧化性能而言,新翠丰总多酚含量最高,并且总抗氧化性能也较高,纸皮仅次于新翠丰,新新 2 总多酚含量最低,总抗氧化性能也较低,抗氧化性能与总多酚含量呈正相关,同时抗氧化性能高说明耐储能力也较强。

本研究中 5 个核桃品种均来自于阿克苏地区,但营养品质存在差异,一方面是由于各核桃的遗传基础不同;另一方面,因为阿克苏地区面积较大,各地区生态环境、土壤条件均有不同,这是导致营养成分存在差异的另一因素,须要进一步研究。

3.2 结论

温 185、纸皮脂肪含量较高,商品一致性较好。新翠丰、新新 2 脂肪含量低,变异系数相对较大,说明具有较丰富的遗传多样性,商品一致性较差。新翠丰核桃油中维生素 E、不饱和脂肪酸含量最高,营养品质较好,纸皮次之,新新 2 最低。

5个核桃品种中,新新2蛋白质含量最高,其次是纸皮,温138最低。核仁中总糖含量大小依次为新翠丰>新新2>温138>温185>纸皮。新翠丰总多酚含量最高,抗氧化能力最强,纸皮次之,说明其耐储藏;新翠丰单宁含量较高,口感涩味较重;纸皮单宁含量最高,口感涩味最重;新新2单宁含量最低.涩味口感较轻,而且变异系数较小。

不同核桃品种都有着自身优势指标,因此在评价核桃品种品质的优劣程度时,须要综合考虑各营养指标。本研究采用打分制对核桃品质优劣程度进行评定,单宁含量由高到低依次为1~5,其他指标含量由低到高依次为1~5,将各指标得分相加,得分最高的核桃品质最佳。结果表明,就营养成分而言,5个核桃品种中纸皮品质相对较好。

参考文献:

- [1]刘 玲,韩本勇,陈朝银.核桃蛋白质研究进展[J]. 食品与发酵 T. W. 2009. 35(9):116-118.
- [2] Torres I C, Mira L, Ornelas C P, et al. Study of the effects of dietary fish intake on serum lipids and lipoproteins in two populations with different dietary habits [J]. The British Journal of Nutrition, 2000, 83 (4):371-379.
- [3] 冯春艳, 荣瑞芬, 历重先. 不同核桃品种脂肪酸的气相色谱分析比较[J]. 食品科学, 2009, 30(24); 262-265.
- [4]赵书岗,赵悦平,王红霞,等. 核桃油脂理化特性与脂肪酸成分的研究[J]. 中国粮油学报,2008,23(2):85-88.
- [5] 凌育赵,刘经亮. 核桃果实各部位脂肪酸的组成与含量分析[J]. 食品研究与开发,2007,28(10):139-142.
- [6] Venkatachalam M, Sathe S K. Chemical composition of selected edible nut seeds [J]. Journal of Agricultural and Food Chemistry, 2006, 54(13):4705-4714.
- [7] Greve L C, McGranahan G, Hasey J. Variation in polyunsaturated fatty acids composition of Persian walnut [J]. J Amer Soc Hort Sci, 1992,117(3):518-522.
- [8]吴耕民. 中国温带果树分类学[M]. 北京:中国农业出版社, 1984:284-286.
- [9]孙 翠,李永涛,王明林,等. 核桃仁维生素 E 含量分析研究[J]. 中国粮油学报,2011,26(6):45-51.
- [10] van Eenennaam A L, Lincoln K, Durrett T P, et al. Engineering vitamin E content; from *Arabidopsis* mutant to soy oil [J]. The Plant Cell, 2003, 15(12);3007 3019.
- [11]王海儒. 新疆阿克苏红富士果形调控的研究[D]. 乌鲁木齐:新疆农业大学,2013.
- [12] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009.
- [13] 翁 霞,辛 广,李云霞. 蒽酮比色法测定马铃薯淀粉总糖的条件研究[J]. 食品研究与开发,2013,34(17);86-88.
- [14]李瑞国,朱秀敏,杨 慧. 不同萌发期绿豆芽蛋白质含量的测定及营养价值分析[J]. 山东农业科学,2011(1):97-99.
- [15]于文萃. 五类常见食品脂肪含量的测定[J]. 黑龙江生态工程职业学院学报,2013,26(6):27-28.
- [16]李 华. 艾尼瓦尔·阿不都拉,阿合买提·毛丽哈. 油脂碘价的快速测定方法[J]. 精细化工,1999,16(3):24-26.
- [17]刘 莹,熊富良,张雪琼,等. 叶下珠中鞣质的含量测定[J]. 医药导报,2007,26(10):1222-1223.
- [18]房祥军,郜海燕,陈杭君. 山核桃加工、贮藏前后总多酚含量及 其抗氧化活性的变化[J]. 食品科学,2011,32(5):104-107.
- [19]刘慧文. 分光光度法快速测定核桃仁中总单宁含量[J]. 现代 仪器,2010,06(6);35-36.
- [20] 罗伟强, 刘 宝, 刁开盛. 毛细管气相色谱法测定核桃油中的脂肪酸[J]. 贵州化工, 2005, 30(3); 40-41.
- [21] 王思宏,方英玉,朴英爱,等. 毛细管气相色谱/质谱法测定核桃 仁油的脂肪酸[J]. 延边大学学报:自然科学版,1999,25(1): 25-27
- [22]郑建仙. 功能性食品[M]. 北京:中国轻工业出版社,1995: 215-217.