马 越,丁云花,刘光敏,等. 青花菜花球及叶片中硫代葡萄糖苷组分及含量分析[J]. 江苏农业科学,2016,44(7):300-303. doi:10.15889/i.issn.1002-1302.2016.07.088

青花菜花球及叶片中硫代葡萄糖苷组分及含量分析

马 越,丁云花,刘光敏,胡丽萍,赵学志,何洪巨

(北京市农林科学院蔬菜研究中心/果蔬农产品保鲜与加丁北京市重点实验室/

农业部华北地区园艺作物生物学与种质创制重点实验室/农业部都市农业(北方)重点实验室,北京100097)

摘要:对 12 个青花菜(Brassica oleracea L. var. botryti L.)品种的花球及叶片中的硫苷含量及组成进行了分析测定,结果表明,青花菜中含有 9 种硫代葡萄糖苷,分别为 3 -甲基硫氧烯丙基硫苷(IBE)、2 -羟基 -3 -丁烯基硫苷(PRO)、2 -丙烯基硫苷(SIN)、4 -甲硫基 -3 -丁烯基硫苷(RAA)、3 -丁烯基硫苷(NAP)、4 -羟基吲哚基 -3 -甲基硫苷(4OH)、3 -甲基吲哚基硫苷(GBC)、4 -甲氧基吲哚基 -3 -甲基硫苷(AME)、1 -甲氧基吲哚基 -3 -甲基硫苷(NEO)。青花菜花球中的硫苷含量是叶片中的 1 ~5 倍不等,不同品种之间存在差异性。RAA 是青花菜中含量最多的硫苷组分。

关键词:青花菜:花球:叶片:硫代葡萄糖苷

中图分类号: S635.301 文献标志码: A 文章编号:1002-1302(2016)07-0300-04

青花菜(Brassica oleracea L. var. botryti L.)属于十字花科芸薹属甘蓝种的变种,为一、二年生草本植物。硫代葡萄糖苷(glucosinolates,GLS,简称硫苷)是一类含硫化合物,是十字花科蔬菜中重要的次生代谢产物。所有的十字花科植物都能够合成硫代葡萄糖苷,硫代葡萄糖苷存在于这些植物的根、茎、叶、种子中[1]。由于侧链 R 基团的不同,可把硫苷分为脂肪类、芳香类、吲哚类硫苷 3 类。硫代葡萄糖苷及其降解产物具有多种生物活性、化学活性,硫代葡萄糖苷已被证实与十字花科蔬菜的风味及营养成分、植物自我保护机制以及人类的身体健康有着密切关系。蔬菜在被食用或机械破碎时,其中所含的硫苷被内源芥子酶水解成多种具有生理活性的降解产物,产物之一的异硫氰酸酯能够有效预防癌症,尤其是膀胱

收稿日期:2015-05-18

基金项目:农业部公益性行业科研专项(编号:20130309);北京市农 林科学院科技创新能力建设专项(编号:KJCX20140111)。

作者简介:马 越(1971—),女,浙江绍兴人,硕士,副研究员,主要从 事食品加工研究。E-mail: mayue@nercv.org。

通信作者:何洪巨,博士,研究员,主要从事蔬菜营养品质研究。 E-mail; hongjuhe@ hotmail.org。

癌、结肠癌和肺癌^[2-4]。青花菜富含3-甲基硫氧烯丙基硫苷(glucoiberin)、4-甲基硫氧丁基硫苷(glucoraphanin)、3-甲基吲哚基硫苷(glucobrassicin)以及1-甲氧基吲哚基-3-甲基硫苷(neoglucobrassicin)^[5]。英国科学家已选育出高硫苷含量的青花菜新品种,该品种的抗癌能力是普通青花菜的80倍^[4,6]。不同蔬菜种类或同一蔬菜种类的不同品种、不同生长环境以及同一植株的不同生长阶段、同一植株的不同部位硫苷的含量及组分都存在差别^[7-10]。本研究对我国市场上常见的12个青花菜品种的花球、叶片的硫苷含量及组成进行了测定,结合青花菜栽培性状及产量等进行分析,旨在对青花菜育种及副产物综合利用提供参考依据。

1 材料与方法

1.1 材料

供试的 12 个青花菜品种来自北京市农林科学院蔬菜研究中心(表1)。2013 年 2 月 1 日播种,3 月 25 日定植于北京市农林科学院蔬菜研究中心通州农场,采用露地直播方式,株距 50 cm,行距 50 cm,重复 3 次。7 月 24 日取新鲜的花球及叶片测定硫苷含量。

情况。如果水温低,应及时采取升温措施,以保证蛙卵的正常孵化。(2)检查蛙卵有无污染。如果卵膜晶莹透明,表明蛙卵没有污染;如果卵团变为土黄色,卵胶膜黏一层泥沙,表明水质不清洁,蛙卵已被污染,应改进灌水技术,排出污染的水,灌入新鲜干净的水。(3)检查有无沉水卵,尤其在利用水池孵化时。如果发现蛙卵沉入池底并粘连于池底泥沙之上,表面黏一层泥沙,呈土黄色,表明出现沉水卵。(4)检查卵团是否在放入孵化池3d内浮出水面。如果卵团浮出水面,在卵粒胶膜之间出现大量气泡,卵团由球形变为片状,表明卵团没有被泥沙污染,孵化状况良好。(5)经常检查蛙卵孵化情况,检查蛙卵发育速度是否整齐一致。在正常情况下,同一团蛙

卵的发育速度基本一致。检查胚胎死亡情况,如果发现较多 蛙卵停止发育,如同一团卵有的已发育至尾芽期,有的则停留 在神经胚阶段,表明停止发育的卵已经死亡。

参考文献:

- [1]杜景新,王 丽,李春慧,等. 林蛙油、林蛙卵油的成分及开发利用[J]. 人参研究,2003,15(3);18-19.
- [2]宋百军,王春清,徐丽平. 药用动物养殖学[M]. 长春:吉林人民 出版社,2009:343-347.
- [3]吕树臣,王春青,常维毅. 中国林蛙难产及其防治[J]. 特种经济 动植物,2003,6(1):39.

表 1 供试的 12 个青花菜品种信息

	W -	IV MOH 3 12	
品种	熟性	单球质量 (kg)	品种来源
中绿1号	中熟	0.4	中国种子集团有限公司
贡献者	早熟	0.2	北京华耐农业发展有限公司
优雅	中晚熟	0.4	北京柯瑞德种子有限公司
野绿	中熟	0.3	商丘市傲雪种业有限公司
中绿6号	中熟	0.3	中国种子集团有限公司
绿森	中晚熟	0.3	北京华耐农业发展有限公司
中绿9号	中晚熟	0.4	中国种子集团有限公司
中绿5号	中晚熟	0.4	中国种子集团有限公司
南秀 366 号	中熟	0.5	北京华耐农业发展有限公司
萨利3号	早熟	0.2	北京华耐农业发展有限公司
幸运	中熟	0.4	上海实满丰种业有限公司(比久)
大帝	中早熟	0.5	北京柯瑞德种子有限公司

1.2 方法

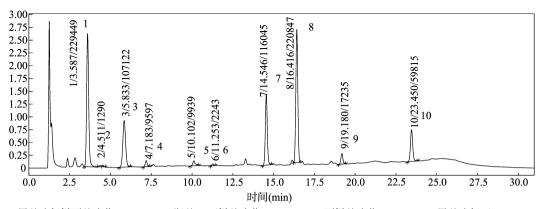
1.2.1 硫苷的提取[11] 取新鲜青花菜花球及叶片,分割成 小球或小片,在真空冷冻干燥机内干燥。称量粉碎好的样品 0.2 g,放入15 mL塑料管中。加入内标TRO(苯甲基硫苷) 0.25 mL, 迅速加入 100% 预热的甲醇, 80 ℃下水浴 20 min, 每 隔 4~5 min 涡旋振荡 1 次 3 000 r/min 离心 10 min 取上清 液倒入15 mL 塑料管中,放在冰盆中。沉淀物继续用70%甲 醇提取2次,同上述处理方法,合并上清液,即为样品液。取 一次性注射器,加入玻璃棉,塞紧,放在试管上。加入 DEAE 胶溶液 2 mL, 用 2 mL 双蒸水洗涤, 加入样品液 2 mL。待样品 液不再滴下,加入 0.02 mol/L NaAc 溶液。待不再有液体滴 下,将注射器转移到另一试管上,加入75 µL 硫酸酯酶溶液, 封口讨夜。将讨夜的注射器用双蒸水洗涤3次,每次 0.5 mL。用注射头挤压注射器,使液体尽可能转移到试管 中。将试管中液体通过 0.45 µm 滤膜转移到小玻璃瓶中,冷 冻保存,待用。

1.2.2 硫苷的分析 HPLC 分析条件: Nova - Pak® C₁₈色谱

柱: $3.9 \text{ mm} \times 150 \text{ mm}$, $50 \text{ }\mu\text{m}$, 检测波长 229 nm, 流速 1.0 mL/min, 常温, 进样量 $20 \text{ }\mu\text{L}$, 梯度洗脱如表 2 所示。 A 液: 1 g 四甲基氯化铵(TMACl)溶于 2 L 双蒸水中, 混匀, 抽滤。 B 液: 1 g 四甲基氯化铵(TMACl)溶于 1.6 L 双蒸水中, 加入 400 mL 色谱纯乙腈, 混匀抽滤。

表 2 流动相梯度组成

时间 (min)	流量 (mL/min)	泵 A (%)	泵 B (%)
0	1	100	0
1	1	100	0
21	1	0	100
26	1	100	0
31	1	100	0


采用苯甲基硫苷作为内标,根据保留时间和峰面积测定 硫苷组分。利用内标和响应因子计算硫苷含量,硫苷含量计 算公式如下:

硫苷含量 = 脱硫硫苷峰面积×内标量×脱硫硫苷相对响应因子 内标峰面积×试样质量

2 结果与分析

2.1 青花菜中硫苷组分

根据不同保留时间以及特征峰形,可以鉴定得到:3-甲基硫氧烯丙基硫苷(glucoiberin, IBE)、2-羟基-3-丁烯基硫苷(progoitrin, PRO)、2-丙烯基硫苷(sinigrin, SIN)、4-甲基硫氧丁基硫苷(glucoraphanin, RAA)、3-丁烯基硫苷(gluconapin, NAP)、4-羟基吲哚基-3-甲基硫苷(4-hydroxyglucobrassicin, 40H)、苯甲基硫苷(glucotropaeolin, TRO, 内标)、3-甲基吲哚基硫苷(glucobrassicin, GBC)、4-甲氧基吲哚基-3-甲基硫苷(4-methoxyglucobrassicin, 4ME)、1-甲氧基吲哚基-3-甲基硫苷(neoglucobrassicin, NEO)(图1)。

1—3-甲基硫氧烯丙基硫苷(IBE); 2—2-羟基-3-丁烯基硫苷(PRO); 3—2-丙烯基硫苷(SIN); 4—4-甲基硫氧丁基硫苷(RAA); 5—3-丁烯基硫苷(NAP); 6—4-羟基吲哚基-3-甲基硫苷(4OH); 7—苯甲基硫苷(内标); 8—3-甲基吲哚基硫苷(GBC); 9—4-甲氧基吲哚基-3-甲基硫苷(4ME); 10—1-甲氧基吲哚基-3-甲基硫苷(NEO)

图1 青花菜硫苷的 HPLC 图谱

2.2 不同青花菜品种中总硫苷含量

由图 2 可以看出,不同青花菜品种间花球及叶片中总硫苷含量差异较大。青花菜花球中,中绿 1 号的硫苷含量最高,为 23.53 μmol/g DW; 其次是贡献者,含量为23.03 μmol/g DW;含量最低的是大帝,为9.19 μmol/g DW。

青花 菜 叶 片 中, 中 绿 9 号 总 硫 苷 含 量 最 高,为 $10.11~\mu mol/g~DW;$ 其次为中绿 5 号,为 9.86 $\mu mol/g~DW$;含 量最低的是南秀 366 号,仅为 $1.93~\mu mol/g~DW$ 。总体而言,青花菜花球中的硫苷含量是叶片的 $1\sim5$ 倍不等,不同品种之间存在差异性。

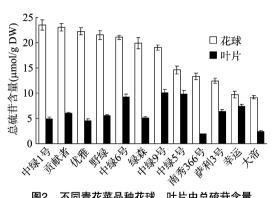


图2 不同青花菜品种花球、叶片中总硫苷含量

2.3 不同青花菜品种中硫苷组分的分析

目前已从自然界中分离鉴定出120多种硫苷,不同十字 花科作物中的硫苷组分不同,其中在芸薹属蔬菜中发现了 15~20 种硫苷^[12], 青花菜中已报道的则有 16 种^[5]。本试验 对 12 个青花菜品种的花球和叶片中的硫苷组分进行了测定,

共检测出9种硫苷组分(表3、表4)。 这9种硫苷分属干脂肪 类、吲哚类,没有检测出芳香类硫苷。

由表 3 可以看出.9 种硫苷组分中, RAA 在青花菜花球中 含量最多,占硫苷总含量的 20,14% ~69,42%。 南季 366 号 总硫苷含量为 13.31 μmol/g, 但 RAA 含量为 9.24 μmol/g, 在所 有品种中占比最高。野绿总硫苷含量为21.55 μmol/g,但其 中 RAA 仅为 4.34 µmol/g, 仅占总含量的 20.14%。结果表 明,不同青花菜栽培种对 RAA 硫苷在总硫苷含量中所占的比 例有影响, 这与 Schonhof 等的检测结果[13]一致。Abercrombie 等研究发现,连续2年青花菜双单倍体(自交种)亲本形成的 双列杂交群体中,RAA含量呈现显著的常规遗传结合力,但 没有发现显著的特殊遗传结合力,常规遗传结合力均方约为 特殊遗传结合力均方的14倍,表明常规结合力在预测杂交产 生的 RAA 含量方面比特殊结合力更重要,因此一个给定的自 交种与其他自交种结合将产生相对可预测 RAA 含量的杂交 种[14]。青花菜花球是主要的可食部位,因此,青花菜潜在的 保健作用主要取决于所选择的栽培品种。

表 3 不同害花苹品种的花球中硫苷组成及总量

品种	脂肪族硫苷含量(μmol/g DW)					吲哚族硫苷含量(μmol/g DW)				硫苷总量
	RAA	IBE	PRO	NAP	SIN	NEO	4ME	40H	GBC	(μmol/g DW)
中绿1号	13.62(57.88%)	0.05	0.01	0.71	0.01	4.43	0.35	0.30	4.05	23.53
贡献者	12.22(53.06%)	3.17	1.82	0.35	0.44	1.73	0.26	0.45	2.59	23.03
优雅	7.57(34.04%)	0.90	2.01	0.29	0.26	8.20	0.46	0.15	2.40	22.24
野绿	4.34(20.14%)	0.01	0.08	0.78	0.01	11.83	0.91	0.28	3.31	21.55
中绿6号	10.46(49.64%)	1.40	0.13	0.31		4.25	0.35	0.22	3.95	21.07
绿森	8.82(44.37%)	3.23	0.36	0.38		3.59	0.21	0.19	3.10	19.88
中绿9号	6.75(35.45%)	0.87	0.86	0.61	0.34	5.22	0.33	0.07	3.99	19.04
中绿5号	6.64(45.45%)	1.00	0.01	0.40		3.07	0.26	0.13	3.10	14.61
南秀 366 号	9.24(69.42%)	0.08	0.17	0.63		1.13	0.24	0.29	1.53	13.31
萨利3号	5.35(43.04%)	1.36	1.27	0.73	0.38	1.58	0.48	0.15	1.13	12.43
幸运	3.64(37.41%)	0.73		0.35	0.01	2.87	0.20	0.05	1.88	9.73
大帝	4.67(50.82%)	0.74	0.54	1.19	0.19	0.81	0.13	0.03	0.89	9.19

注:括号内数值表示该硫苷在总硫苷中所占百分比。下表同。

由表 4 可以看出, RAA 在青花菜叶片硫苷组分中占比最 高,占总含量的9.33%~56.57%,其中中绿6号总硫苷含量 9.25 μmol/g DW, RAA 含量为 4.76 μmol/g DW; 南秀 366 号 总硫苷含量为所有品种中最低,仅为1.93 µmol/g DW,其中 RAA 占比也最低。叶片的用途与花球不同,叶片是青花菜的 副产物,可以作为饲料进行再利用。研究表明,含有 β -OH 的硫代葡萄糖苷能降解生成2种能导致甲状腺肿大的产物: 异硫氰酸盐和唑烷-2-硫,它们通过不同的方式作用于动物 或人体的甲状腺造成危害^[3-4]。PRO 是对营养价值不利的主 要硫苷组分[15]。从表4可以看出,PRO占总硫苷含量从

表 4 不同青花菜品种的叶片中硫苷组成及总量

品种	脂肪族硫苷含量(μmol/g DW)						吲哚族硫苷含量(μmol/g DW)			
	RAA	IBE	PRO	NAP	SIN	NEO	4ME	40H	GBC	_(μmol/g DW)
中绿9号	3.00(26.70%)	3.27	2.13(21.07%)	0.50	0.54	0.41	0.06	0.10	0.10	10.11
中绿5号	4.28(43.41%)	2.05	1.95(19.78%)	0.33	0.74	0.35	0.10	0.06		9.86
中绿6号	4.76(51.46%)	1.85	1.13(12.22%)	0.53	0.76	0.17	0.01	0.03	0.01	9.25
幸运	3.23(43.65%)	1.3	0.88(11.89%)	0.80	0.89	0.25	0.01	0.03	0.01	7.40
萨利3号	1.34(21.04%)	1.5	2.14(33.59%)	0.76	0.24	0.25	0.08	0.01	0.05	6.37
贡献者	1.60(26.71%)	1.78	1.42(23.71%)	0.42	0.29	0.35	0.02	0.08	0.03	5.99
野绿	0.86(15.58%)	1.89	1.65(29.89%)	0.40	0.01	0.60	0.05	0.05	0.01	5.52
绿森	1.88(37.08%)	0.66	0.73 (14.40%)	0.35	1.09	0.18	0.13	0.04	0.01	5.07
中绿1号	2.80(56.57%)	0.73	0.78(15.76%)	0.33	0.02	0.21	0.04	0.03	0.01	4.95
优雅	0.73(16.11%)	0.82	1.94(42.83%)	0.63	0.08	0.24	0.08	0.01		4.53
大帝	0.32(13.06%)	0.57	0.73(29.80%)	0.62	0.06	0.13	0.02			2.45
南秀 366 号	0.18(9.33%)	0.32	0.51(26.42%)	0.65	0.01	0.12	0.01	0.12	0.01	1.93

11.89% ~ 42.83% 不等, 其中幸运品种 PRO 含量为 $0.88 \mu mol/g DW$, 硫苷总含量为 $7.4 \mu mol/g DW$, 幸运品种的叶片最适宜进行饲料加工。

青花菜是十字花科蔬菜中 4 - 甲硫基 - 3 - 丁烯基硫代葡萄糖苷(glucoraphanin, RAA)含量最丰富的蔬菜之一^[16]。RAA 是萝卜硫素前体,萝卜硫素已被证实是迄今为止发现的最强烈的 phase Ⅱ 酶诱导剂,能降低食道癌、结肠癌、乳腺癌等多种癌症的发病率^[2-5,17-19]。其他硫苷的同源异硫氰酸盐的抗癌功效也有报道,如 3 - 甲基吲哚基硫苷(glucobrassicin, GBC)的水解产物吲哚 - 3 - 甲醇能够调节生物转化酶的活性,从而抑制乳腺癌、前列腺癌细胞的活性^[20-21]。

不同蔬菜和品种中硫苷含量的差异可以归结为基因型不同^[22],同时受环境因素的影响。Farnham 等对生长在 3 个不同环境下的 9 种不同基因型的青花菜硫苷含量进行了研究,发现环境对硫苷含量影响显著,RAA 是唯一显著受基因型影响的 硫苷,对 RAA 含量的影响 因素中,基因型效应占52.8%,基因型和环境互作效应小于基因型^[10]。本试验中所有青花菜品种均生长在同一环境中,栽培条件基本相同,因此硫苷含量差异主要取决于品种本身基因差异。

3 结论

本研究结果表明,青花菜中检测到9种硫代葡萄糖苷,分别为3-甲基硫氧烯丙基硫苷(IBE)、2-羟基-3-丁烯基硫苷(PRO)、2-丙烯基硫苷(SIN)、4-甲硫基-3-丁烯基硫苷(RAA)、3-丁烯基硫苷(NAP)、4-羟基吲哚基-3-甲基硫苷(4OH)、3-甲基吲哚基硫苷(GBC)、4-甲氧基吲哚基-3-甲基硫苷(MEO)。这9种硫苷分属于吲哚类与脂肪类,没有检测到芳香类硫苷。其中4-甲硫基-3-丁烯基硫代葡萄糖苷是青花菜中的主要硫苷。南秀366号花球中RAA含量占比最高,叶片中RAA含量占比最低,具有潜在的应用前景。

参考文献:

- [1]季宇彬,武晓丹,邹 翔. 硫代葡萄糖苷的研究[J]. 哈尔滨商业 大学学报:自然科学版,2005,21(5):550-554.
- [2] Cartea M E, Velasco P. Glucosinolates in brassica foods: Bioavailability in food and significance for human health[J]. Phytochemistry Reviews, 2008, 7(2):213-229.
- [3] Manson M M, Ball H W, Barrett M C, et al. Mechanism of action of dietary chemoprotective agents in rat liver; induction of phase I and II drug metabolizing enzymes and aflatoxin B₁ metabolism [J]. Carcinogenesis, 1997, 18(9):1729-1738.
- [4] Mithen R, Faulkner K, Magrath R, et al. Development of isothiocyanate – enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells [J]. Theoretical and Applied Genetics, 2003, 106(4):727 –734.
- [5] Latté K P, Appel K E, Lampen A. Health benefits and possible risks of broccoli; an overview [J]. Food and Chemical Toxicology, 2011, 49

- $(12.) \cdot 3287 3309$
- [6] Sarikamis G, Marquez J, Maccormack R, et al. High glucosinolate broccoli; A delivery system for sulforaphane [J]. Molecular Breeding, 2006.18(3):219 - 228.
- [7]何洪巨,陈 杭,Schnitzler W H. 芸薹属蔬菜中硫代葡萄糖苷鉴 定与含量分析[J]. 中国农业科学,2002,35(2):192-197.
- [8] Sun B, Liu N, Zhao Y T, et al. Variation of glucosinolates in three edible parts of Chinese kale (*Brassica alboglabra* Bailey) varieties [J]. Food Chemistry, 2011, 124(3):941-947.
- [9] Brown P D, Tokuhisa J G, Reichelt M, et al. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana [J]. Phytochemistry, 2003, 62(3):471 – 481.
- [10] Farnham M W, Wilson P E, Stephenson K K, et al. Genetic and environmental effects on glucosinolate content and chemoprotective potency of broccoli[J]. Plant Breeding, 2004, 123(1):60-65.
- [11] He H, Ping L, Bonnema G, et al. Genetic variation in glucosinolate content within *Brassica rapa* vegetables [J]. Acta Horticulturae, 2012,944:129-140.
- [12] Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants [J]. Phytochemistry, 2001, 56(1):5-51.
- [13] Schonhof I, Krumbein A, Brückner B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower [J]. Die Nahrung, 2004, 48(1):25-33.
- [14] Abercrombie J M, Farnham M W, Rushing J W. Genetic combining ability of glucoraphanin level and other horticultural traits of broccoli [J]. Euphytica, 2005, 143 (1/2):145-151.
- [15] Halkier B A, Gershenzon J. Biology and biochemistry of glucosino-lates [J]. Annual Review of Plant Biology, 2006, 57:303 333.
- [16] Vallejo F, Tomás Barberán F A, García Viguera C. Potential bioactive compounds in health promotion from broccoli cultivars grown in Spain [J]. Journal of Science of Food and Agriculture, 2002,82:1293-1297.
- [17] Juge N, Mithen R F, Traka M. Molecular basis for chemoprevention by sulforaphane: A comprehensive review [J]. Cellular and Molecular Life Sciences, 2007, 64(9):1105-1127.
- [18]姚丹燕,吴秋云,李 倩,等. 萝卜硫素调控机制的研究进展 [J]. 园艺学报,2014,41(5):1020-1026.
- [19]单彦卿,张建丽,何洪巨.十字花科植物中硫代葡萄糖苷及萝卜 硫素的性质研究[J].食品科技,2007,32(9);110-112.
- [20] Brew C T, Aronchik I, Kosco K, et al. Indole 3 carbinol inhibits MDA MB 231 breast cancer cell motility and induces stress fibers and focal adhesion formation by activation of Rho kinase activity [J]. International Journal of Cancer, 2009, 124(10); 2294 2302.
- [21] Weng J R, Tsai C H, Kulp S K, et al. Indole 3 carbinol as a chemopreventive and anti cancer agent[J]. Cancer Letters, 2008, 262 (2):153-163.
- [22]刘 哲,张秋萍,苏小俊,等. 萝卜硫苷合成和调节相关基因研究进展[J]. 江苏农业科学,2015,43(6):168-170.