姚秋萍,严 敏,何可群,等. 鱼腥草多糖纳米乳的制备及质量评价[J]. 江苏农业科学,2018,46(22):190-193. doi:10.15889/i.issn.1002-1302.2018.22.045

# 鱼腥草多糖纳米乳的制备及质量评价

姚秋萍,严敏,何可群,周培富,姜春兰 [贵州民族大学化学工程学院(民族医药学院),贵州 550025]

摘要:制备鱼腥草多糖纳米乳并进行质量评价。通过伪三元相图法优化鱼腥草多糖纳米乳剂的配方,测定其形态、粒径分布、pH值、黏度、稳定性及有效成分含量。结果表明,鱼腥草多糖纳米乳剂的配方为 Tween80/Span80、无水乙醇、液体石蜡、1%鱼腥草多糖溶液配方的质量比为9:3:3:10:2.8,制备的鱼腥草多糖纳米乳剂为 W/O型,透射电镜下呈圆球形,平均粒径为143.5 nm,外观为棕黄色透明液体,pH值为6.81,黏度为9.08 s,理化性质稳定。鱼腥草多糖纳米乳剂制备工艺简单,具有较大的开发应用价值。

关键词: 鱼腥草; 多糖; 纳米乳剂; 制备; 理化性质; 三元相图

中图分类号: R944.1 文献标志码: A 文章编号:1002-1302(2018)22-0190-04

纳米乳(nanoemulsion, 简称 NE) 由水相、表面活性剂、油 相按比例制成的粒径在10~200 nm,透明或半透明乳化运输 体系[1]。纳米乳作为一种极具前途的新型药物载体,具有极 高的稳定性、提高难溶性药物的溶解度、促进大分子水溶性药 物在体内的吸收、提高药物的生物利用度等优点[2-3]。 鱼腥 草多糖是鱼腥草的主要有效成分之一,药理研究表明,鱼腥草 多糖具有抗肿瘤、抗衰老、抗氧化和抑菌等作用[4-6]。目前对 多糖纳米乳剂的研究已有相关文献报道,大豆多糖与大豆酸 溶蛋白在高压微射流作用下可制备成纳米乳液[7]。藏蒲公 英多糖纳米乳能通过调节体内的激素水平,从而提高蛋鸡生 产性能,能促进小鼠器官的生长发育提高机体免疫力[8-10]。 以红鱼软骨多糖生产的眼用纳米乳制剂为例,其质量稳定,符 合眼用制剂的标准[11]。黄芪多糖与紫锥菊提取物纳米乳佐 剂能显著增强机体抗体的产生能力,同时可以增强 Th1 和 Th2 的免疫应答反应[12]。本研究通过筛选合适的油、表面活 性剂和助表面活性剂,制备了 W/O 型鱼腥草多糖纳米乳剂, 并对其理化性质进行研究,以期为利用纳米技术开发中药多 糖提供理论依据。

#### 1 材料与方法

### 1.1 材料与主要试剂

鱼腥草多糖为实验室自制(水提醇沉法提取鱼腥草多糖,Sevag 法除蛋白,鱼腥草多糖含量为24.45%),Tween80、Tween60、Span80、Span60、肉豆蔻酸异丙酯、液体石蜡、无水乙醇、丙三醇、正丁醇、乙酸乙酯、苏丹红Ⅲ、亚甲基兰等均为分析纯。玉米油、大豆油(江西益普生药业有限公司,药用级)。1.2 主要仪器

分析天平(JA5003型,舜宇恒平仪器)、磁力加热搅拌器 (78-1型,常州澳华仪器有限公司)、高速离心机(TDL-

8M,卢湘仪)、双光束紫外可见分光光度计(TU-1901,北京普析通用有限责任公司)、Tecnai G<sup>2</sup> F20 S-Twin 场发射高分辨率透射电子显微镜(FEI 公司)、Mastersizer 2000 激光粒度仪(英国马尔文仪器有限公司)。

### 1.3 鱼腥草多糖纳米乳配方的筛选

按一定比例将筛选出的表面活性剂、助表面活性剂、油相和水相进行混合,制备鱼腥草多糖纳米乳。

1.4 鱼腥草多糖纳米乳中鱼腥草多糖含量的测定

采用苯酚 – 硫酸对鱼腥草多糖纳米乳中的多糖含量进行测定 $^{[13]}$ 。

1.5 鱼腥草多糖纳米乳类型的鉴定

采用染色法判断鱼腥草多糖纳米乳类型[14]。

1.6 鱼腥草多糖纳米乳稳定性试验

取鱼腥草多糖纳米乳适量,分别于温度为 4.25.37.40、60 °C条件下保存,分别于 5.10 d 后取样考察,观察其外观、pH 值和鱼腥草多糖含量。

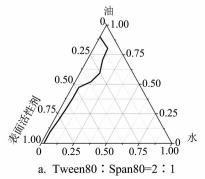
## 2 结果与分析

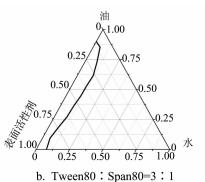
2.1 鱼腥草纳米乳配方的筛选

2.1.1 表面活性剂的选择 试验选用 Tween 80[ 亲水亲油 平 衡 值 (hydrophile lipophilic balance, 简 称 HLB, HLB = 14.9)]、Tween 60 (HLB = 15)、Span80 (HLB = 4.3)、Span60 (HLB = 4.7)作为表面活性剂,根据混合表面活性剂 HLB 值,对以上表面活性剂进行复配和热稳定性观察,由表 1 可知,最佳表面活性剂复配组合为 Tween80 和 Span80。

在室温下,分别将混合表面活性剂 Tween80 和 Span80 按 质量比为2:1、3:1、4:1 进行混合,以液体石蜡为油相,加 水搅拌至形成透明的纳米乳剂,观察纳米乳的澄清度和黏度 变化。采用 Origin 7.0 软件,分别以混合表面活性剂、油相、水相作为相图的3个顶点绘制伪三元相图(图1)。当 Tween80 和 Span80 质量比为3:1 时,Tween80/Span80、液体石蜡、水形成的纳米乳区的面积最大。

2.1.2 助表面活性剂的选择 试验选用无水乙醇、正丁醇和 丙三醇作为助表面活性剂。将混合表面活性剂与助表面活性


产物综合利用研究。E - mail:wonderyqp@aliyun.com。


收稿日期:2018-01-22

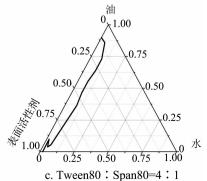
基金项目:贵州省科技合作计划(编号:黔科合字[2015]7210)。 作者简介:姚秋萍(1978—),女,陕西渭南人,博士,副教授,从事天然

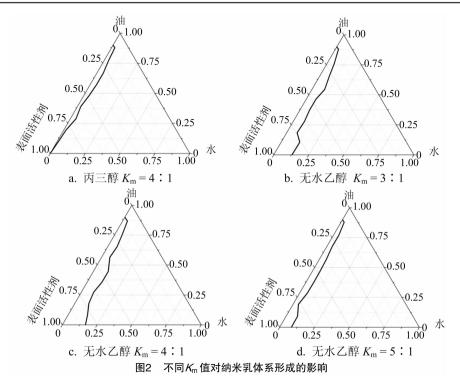
| ± 1              | 表面活性剂复配结里              |
|------------------|------------------------|
| <del>-    </del> | * III '도'나 에 든 번 'Z는 목 |

| <b>水</b> - 水画信任//交出4/木 |         |         |         |        |  |  |
|------------------------|---------|---------|---------|--------|--|--|
| 混合表面活性剂                | 质量比     | 外观      |         |        |  |  |
| 化百衣四百注剂                | 灰里比     | 4 ℃     | 室温      | 60 ℃   |  |  |
| Tween80/Span60         | 1:1,2:1 | 乳白色膏状固体 | 乳白色膏状固体 | 澄清透明液体 |  |  |
| Tween80/Span80         | 1:1,2:1 | 澄清透明液体  | 澄清透明液体  | 澄清透明液体 |  |  |
| Tween60/Span80         | 1:1,2:1 | 破乳分层液体  | 白沫分层液体  | 澄清透明液体 |  |  |
| Tween60/Span60         | 1:1,2:1 | 乳白色膏状固体 | 乳白色浑浊液体 | 澄清透明液体 |  |  |









图1 表面活性剂对纳米乳体系形成的影响

剂按  $K_m = 1:1$ 、2:1、3:1、4:1 混合,再分别与液体石蜡混匀后进行筛选。由表 2 可知,无水乙醇( $K_m = 3:1$ 、4:1)和丙三醇( $K_m = 4:1$ )能形成澄清透明的纳米乳剂。由图 2 可

知,当 $K_m = 4:1$ 时,无水乙醇作为助表面活性剂形成的纳米乳区面积最大,并且纳米乳易形成,不会出现凝胶等形态。因此,确定 $K_m = 4:1$ 。

表 2 助表面活性剂的筛选结果

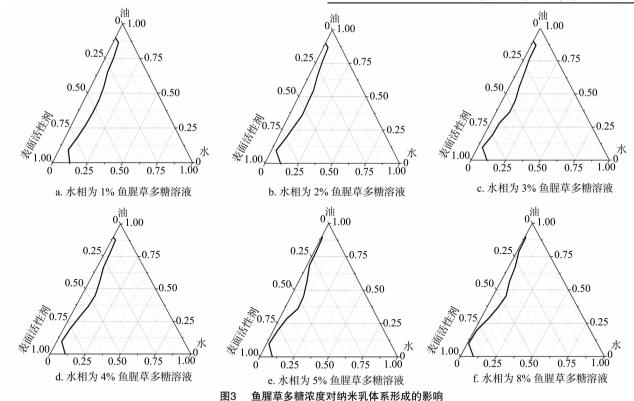
| 助表面活性剂 | V                |           |         |         |  |  |
|--------|------------------|-----------|---------|---------|--|--|
|        | $\Lambda_{ m m}$ | 4 ℃       | 室温      | ℃ 00    |  |  |
| 无水乙醇   | 1:1,2:1          | 浑浊,油水分离   | 浑浊,油水分离 | 浑浊,破乳分层 |  |  |
| 无水乙醇   | 3:1,4:1          | 半透明       | 澄清透明液体  | 澄清透明液体  |  |  |
| 正丁醇    | 1:1,2:1,3:1,4:1  | 乳白色浑浊,有浮沫 | 乳白色浑浊   | 乳白色浑浊   |  |  |
| 丙三醇    | 1:1,2:1,3:1      | 浑浊        | 浑浊      | 浑浊      |  |  |
| 丙三醇    | 4:1              | 透明        | 透明      | 透明      |  |  |



2.1.3 油相的选择 试验选择玉米油、大豆油、液体石蜡和 肉豆蔻酸异丙酯作为待选油相。由表 3 可知,玉米油和大豆 油都不能形成纳米乳,肉豆蔻酸异丙酯在温度为60 ℃时纳米 乳变浑浊,而液体石蜡作为油相是最稳定的。因此,选择液体 石蜡为最佳油相。

表 3 油相的筛选结果

| 待冼油相    | 质量比         | 外观     |         |         |  |
|---------|-------------|--------|---------|---------|--|
| 付延佃佃    | (S/O)       | 4 ℃    | 室温      | 60 ℃    |  |
| 玉米油     | 1:9,2:8,3:7 | 浑浊     | 油水分层半透明 | 油水分层半透明 |  |
| 大豆油     | 1:9,2:8,3:7 | 浑浊破乳分层 | 浑浊破乳分层  | 浑浊破乳分层  |  |
| 液体石蜡    | 1:9,2:8,3:7 | 透明     | 透明      | 透明      |  |
| 肉豆蔻酸异丙酯 | 1:9,2:8,3:7 | 透明     | 透明      | 浑浊      |  |


注:S/O 为混合表面活性剂与油相的质量比。

2.1.4 水相的选择 试验以不同浓度的鱼腥草多糖作为水相进行筛选。由表 4 可知,温度为 60 ℃时,形成的纳米乳浑浊。由图 3 可知,鱼腥草多糖浓度在 1% ~ 4% 时,纳米乳区的面积没有明显变化;浓度为 5% 和 8% 时纳米乳区的面积明显减小。当鱼腥草多糖浓度为 1% 时,纳米乳区面积最大,并且当 S/0 为 3:2 时加入的水量最多,载药量也最大。

鱼腥草多糖纳米乳中各组分的质量比 Tween80: Span80: 无水乙醇:液体石蜡:1% 鱼腥草多糖=9:3:3:10:2.8。

表 4 水相的筛选结果

| 鱼腥草多糖溶液 | 质量比     | 外观  |    |      |      |  |
|---------|---------|-----|----|------|------|--|
| 浓度(%)   | (S/O)   | 4 ℃ | 室温 | 40 ℃ | 60 ℃ |  |
| 1       | 1:9~9:1 | 透明  | 透明 | 透明   | 浑浊   |  |
| 2       | 1:9~9:1 | 透明  | 透明 | 透明   | 浑浊   |  |
| 3       | 1:9~9:1 | 透明  | 透明 | 透明   | 浑浊   |  |
| 4       | 1:9~9:1 | 透明  | 透明 | 半透明  | 浑浊   |  |
| 5       | 1:9~9:1 | 透明  | 透明 | 半透明  | 浑浊   |  |
| 8       | 1:9~9:1 | 透明  | 透明 | 半透明  | 浑浊   |  |



2.2 鱼腥草多糖纳米乳的理化性质

- 2.2.1 纳米乳多糖含量 采用苯酚 硫酸法测定鱼腥草多糖纳米乳中鱼腥草多糖含量,以葡萄糖浓度(mg/mL)为横坐标、吸光度值为纵坐标制作标准曲线,回归方程为 y=11.626x+0.0347, $r^2=0.9964$ ,经测定本试验的纳米乳多糖含量为8.55 mg/mL。
- 2.2.2 外观和 pH 值 鱼腥草多糖纳米乳剂外观为棕黄色透明液体,流动性良好,pH 值为 6.81。
- 2.2.3 黏度 取出口内径为 1.2 mm 的玻璃吸管吸取鱼腥

- 草多糖纳米乳剂 1 mL,在室温下记录流出所需要的时间(即为其黏度,s)。测得本试验的纳米乳黏度为 9.08 s。
- 2.2.4 形态及粒径 鱼腥草多糖纳米乳在透射电镜下呈圆球形(图4),平均粒径为143.5 nm。
- 2.3.5 鱼腥草多糖纳米乳的类型 根据水溶性染料亚甲基 兰(蓝色)易在水相中扩散,油溶性染料苏丹红Ⅲ号(红色)易 在油相中扩散的特点,结果表明,苏丹红Ⅲ号的扩散速度比亚甲基兰快,即鱼腥草多糖纳米乳属于 W/O 型。
- 2.3.6 鱼腥草多糖纳米乳的稳定性考察 将鱼腥草多糖纳

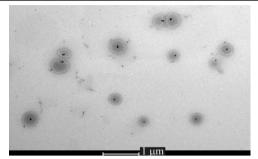



图4 鱼腥草多糖纳米乳透射电镜照片

米乳离心 10 min(10 000 r/min)后,外观仍能保持澄清透明、均一,并且没有出现药物析出的现象。由表 5 可知,鱼腥草纳米乳的稳定性较好。在 4、25、37、40 ℃存放 30 d后,未见有药物析出、絮凝等现象,pH值、多糖含量、外观的变化不明显。本试验制备的鱼腥草炙糖纳米乳剂在 40 ℃下保存较为稳定。

## 3 结论与讨论

纳米乳配方组分的筛选一般是先选定某种表面活性剂相 或混合表面活性剂相,然后根据其 HLB 值确定油相种类。表 面活性剂亲水亲油平衡值的选择是微乳配方设计的一个初步

表 5 鱼腥草多糖纳米乳的稳定性

| 放置条件 | pH 值 |      |      | pH 值 多糖含量(%) |      | )    | 外观    |       |       |
|------|------|------|------|--------------|------|------|-------|-------|-------|
| (℃)  | 0 d  | 15 d | 30 d | 0 d          | 15 d | 30 d | 0 d   | 15 d  | 30 d  |
| 4    | 6.81 | 6.81 | 6.81 | 9.6          | 9.6  | 9.6  | 棕黄色透明 | 棕黄色透明 | 棕黄色透明 |
| 25   | 6.81 | 6.81 | 6.81 | 9.6          | 9.6  | 9.6  | 棕黄色透明 | 棕黄色透明 | 棕黄色透明 |
| 37   | 6.81 | 6.81 | 6.81 | 9.6          | 9.6  | 9.6  | 棕黄色透明 | 棕黄色透明 | 棕黄色透明 |
| 40   | 6.81 | 6.76 | 6.73 | 9.6          | 9.6  | 9.6  | 棕黄色透明 | 棕黄色透明 | 棕黄色透明 |
| 60   | 6.81 | 6.68 | 6.65 | 9.6          | 9.6  | 9.6  | 变浑浊   | 变浑浊   | 变浑浊   |

指标。当表面活性剂的 HLB 值范围在 8~18 时,易形成 O/W型微乳;HLB 值范围在 4~7 时,易形成 W/O 型微乳<sup>[9]</sup>。 HLB 值过低或过高都须要进行复配,且当表面活性剂与油相乳化所需的 HLB 值相吻合时,纳米乳才易形成。试验对表面活性剂进行复配和热稳定性观察,筛选 Tween80 和 Span80 为表面活性剂,且当 Tween80 和 Span80 质量比为 3:1 时所得伪三元相图纳米乳区的面积最大。试验选择无水乙醇为助表面活性剂,因为醇类能增大药物溶解度,提高载药量,通过自身的剪切作用减小纳米乳的粒径<sup>[3]</sup>,且当  $K_m = 4:1$  时能形成澄清透明的乳化剂,纳米乳区域最大。但醇类具有挥发性,放置时必须密封保存,否则会导致药物析出,影响纳米乳制剂的质量。相比于玉米油、大豆油和肉豆蔻酸异丙酯,试验选择液体石蜡作为油相最稳定。鱼腥草多糖纳米乳在 40 ℃以下能保持良好的稳定性,但温度高于 60 ℃体系会出现浑浊,这可能与表面活性剂的浊点有关<sup>[9]</sup>。

以 Tween80 和 Span80 为表面活性剂,无水乙醇为助表面活性剂,液体石蜡为油相制备的鱼腥草多糖纳米乳外观透明、黏度小,鱼腥草多糖含量为 8.55 mg/mL,透射电镜下纳米乳呈球形,平均粒径为 143.5 nm。本试验制备鱼腥草多糖纳米乳的工艺可行、方法可靠、重复性好,纳米乳粒径小,性质稳定,为开发鱼腥草多糖新剂型奠定了良好的基础。

#### 参考文献:

- [1]吴旭锦. 紫苏子油纳米乳的研究[D]. 杨凌:西北农林科技大学,2008.
- [2] 杨鹏飞, 陈卫东. 纳米乳提高难溶性药物生物利用度的研究进展 [J]. 中国药学杂志, 2013, 48(15); 1238-1244.
- [3]夏鹏飞,马 肖,吴国泰,等. 龙胆苦苷纳米乳的制备工艺及质量

安全性评价[J]. 天然产物研究与开发,2017,29(11):1824-1830

- [4] 刘光建,王 璐,王菲菲,等. 鱼腥草多糖对小鼠肝、肾、心肌和脑组织抗氧化作用的研究[J]. 中国实验方剂学杂志,2011,17(8): 207-210.
- [5]王 健,史 玉,张永泽,等. 鱼腥草不同部位提取物的抗菌抗病毒作用比较[J]. 河北工程大学学报(自然科学版),2010,27 (2);104-106.
- [6] 张娟娟, 卢 燕, 陈道峰. 鱼腥草抗补体活性多糖的制备工艺研究[J]. 中国中药杂志, 2012, 37(14): 2071-2075.
- [7]齐军茹,翁静宜,康燕辉,等. 大豆酸溶蛋白/大豆多糖纳米乳液的制备及表征[J]. 现代食品科技,2015,31(6):6136-6141.
- [8] 郝艳霜,卫书鹏,魏 军. 蒲公英多糖纳米乳对蛋鸡生产性能的 影响[J]. 养禽与禽病防治,2012(5):6-9.
- [9] 郝艳霜,魏 军,陈福星. 藏蒲公英多糖纳米乳剂的制备及性质研究[J]. 江苏农业科学,2012,40(6):236-239.
- [10]马红梅,别玉宙,魏 军,等. 藏蒲公英多糖纳米乳剂对小鼠外周血 T 淋巴细胞亚群 CD4<sup>+</sup>、CD8<sup>+</sup> 的影响[J]. 粮食与饲料加 T.2013(6):51-53.
- [11] 曹见敏,张 蕾,郭 斌. 紅鱼软骨多糖眼用纳米乳的质量评价 [J]. 山东大学学报(医学版),2010,48(5):157-160.
- [12]李树鹏,郝艳霜,欧阳五庆. 黄芪多糖与紫锥菊提取物纳米乳的制备及免疫佐剂效应研究[J]. 西北农林科技大学学报(自然科学版),2011,39(10):10-16.
- [13] 刘军海,黄宝旭,蒋德超.响应面分析法优化艾叶多糖提取工艺研究[J].食品科学,2009,30(2):114-118.
- [14] 芮亚培, 欧阳五庆, 邱 刚, 等. 红霉素纳米乳的制备及其药效 学研究[J]. 西北农林科技大学学报(自然科学版),2008,36 (3):59-63.