李金辉,吴汉福,翁贵英,等. 贵州六盘水城市污泥中重金属的形态特征及其农用生态风险评价[J]. 江苏农业科学,2019,47(1):304-308. doi:10.15889/j. issn. 1002-1302. 2019. 01.071

贵州六盘水城市污泥中重金属的形态特征 及其农用生态风险评价

李金辉1,吴汉福1,翁贵英2,陈定梅1,王绪英2,赵由才3

(1. 六盘水师范学院化学与材料工程学院,贵州六盘水 553004; 2. 六盘水师范学院生物科学与技术学院,贵州六盘水 553004; 3. 同济大学污染控制与资源化研究国家重点实验室,上海 200092)

摘要:分析贵州省六盘水市 6 座污水处理厂脱水城市污泥中的 Cu、Pb、Cd、Cr、Ni、Zn、As、Hg 含量,采用 BCR 法研究污泥中重金属的形态特征,并用地累积指数($I_{\rm geo}$)法和潜在生态危害指数(RI)法评价污泥在农用过程中的潜在生态风险。结果表明,L1、L2、L3、L4 污泥中 Cd 含量超出农用泥质 A 级标准限值,低于 B 级标准限值(CJ/T 309—2009),其余重金属含量均满足 A 级标准。污泥中 Cd 的可提取态较高,Zn 次之,Pb、Cr、As、Hg 主要以稳定态存在。 $I_{\rm geo}$ 结果表明,Cu、Pb、Cd、Zn、Hg 为潜在污染元素,其中 Cd 污染最严重;RI 结果表明, $E_{\rm r}^{\rm Cd}$ 、 $E_{\rm r}^{\rm Hg}$ 较高,为主要贡献者,L1、L2 污泥为高生态风险,其余为中等生态风险。贵州六盘水城市污泥具有较好的农用价值,污染和生态风险主要来自 Cd 元素,在污泥农用时应加以重视。

关键词:城市污泥;重金属;形态特征;地累积指数;潜在生态危害指数;农用生态风险评价

中图分类号: X703 文献标志码: A 文章编号:1002-1302(2019)01-0304-05

随着经济的发展以及城镇化的推进,城镇生活污水排放量不断增加,污水处理量也随之增加,伴随着污水处理而产生的污泥量增加。据中华人民共和国环境保护部 2015 年环境统计年报报道,2015 年,全国共有 6 910 座城镇污水处理厂,设计处理能力为 18 736 万 t/d,全年共处理废水 532.3 亿 t,其中处理生活污水 470.6 亿 t,占总处理废水量的 88.4%,污泥产生量为 3 015.9 万 t,污泥处置量为 3 015.8 万 t^[1]。目前,国内外污泥处置方式主要有填埋、焚烧和土地利用等。污泥中富含农作物生长所需的有机质、氮、磷、钾等营养物质,具有较好的土地利用潜力,但亦含有一定量的重金属,重金属具有转好的土地利用潜力,但亦含有一定量的重金属,重金属具有毒性大、潜伏期长、易在食物链中富集等特性,因此污泥中重金属含量是限制污泥农用的重要指标之一^[2]。城市污泥中重金属的含量因地理位置、城市性质、处理工艺等的不同而存在很大差异^[3]。污泥中重金属在环境中的行为不仅与其总量有关,更大程度上取决于其化学形态^[4]。

六盘水市位于贵州省西部,是国家"三线"建设时期发展起来的一座能源、原材料工业城市。全市现有污水处理厂6座,污泥处置方式均为卫生填埋。当前随着垃圾填埋场库容的不断减少,污泥处置问题日益凸显,因此研究其城市污泥处置方式十分必要。目前污泥农用是污泥高效、经济的处置方

收稿日期:2018-03-14

基金项目:贵州省科学技术项目(编号:黔科合 LH 字[2015]7631); 六盘水师范学院科技创新团队(编号:LPSSYKJTD201602);六盘水 师范学院实验教学示范中心(编号:LPSSYsyjxsfzx201701)。

作者简介:李金辉(1972—),女,河北南皮人,高级实验师,主要从事 仪器分析化学与环境污染教学研究。E - mail: lpssylijinhui@ 163.com。

通信作者:赵由才,博士,教授,博士生导师,主要从事固体废物处理 与资源研究。E-mail:Zhaoyoucai@tongji.edu.cn。 式之一。本研究以六盘水市6座污水处理厂的城市污泥为研究对象,对污泥的理化性质、营养学指标和重金属(Cu、Pb、Cd、Cr、Ni、Zn、As、Hg)含量及形态特征进行分析,并采用地累积指数法、潜在生态危害指数法对其农用生态风险进行评价,以期为六盘水市城市污泥的合理处置提供科学依据。

1 材料与方法

1.1 污泥样品的采集与预处理

污泥样品采集于六盘水市钟山区、水城县、盘州市、六枝特区的6座污水处理厂,分别命名L1、L2、L3、L4、L5、L6(图1)。

图1 污泥采样点位置示意

在2016年冬季对污泥进行系统采样,污泥样品均采集于污水处理厂传送带上,每5 min 采集1次样品,经多次采集后将样品混合均匀,总计3 kg 左右,装入聚乙烯样袋密封带回实验室。取新鲜样品进行含水率测定,于避光、通风处自然风

干,采用四分法多次筛选后取 200 g 左右样品,用玛瑙研钵研细,过 100 目尼龙筛,装入聚乙烯样袋中保存备用。样品来源

及污水处理厂基本情况见表1。

表 1 污水处理厂基本情况

污水处理厂名称	地理位置	处理工艺	污水来源	污水处理量 (万 m³/d)	污泥处置方式
L1	钟山区	高负荷性污泥/化学絮凝工艺法	生活污水	5.0	外运,填埋
L2	水城县	一体化生物脱氮除磷污水处理工艺	生活污水	1.0	外运,填埋
L3	钟山区	一体化生物脱氮除磷污水处理工艺	生活污水	1.5	外运,填埋
L4	盘州市	一体氧化沟	生活污水	1.5	外运,填埋
L5	盘州市	一体化生物脱氮除磷污水处理工艺	生活污水	1.0	外运,填埋
L6	六枝特区	一体氧化沟	生活污水	1.8	外运,填埋

1.2 主要仪器与试剂

仪器:原子吸收分光光度计(iCE 3500,美国 Thermo Fisher 公司),双道原子荧光光度计(AFS-9700,北京海光仪器有限公司),定氮仪(KDN-102C,上海纤检仪器有限公司),电热板(EG35B,北京莱伯泰科仪器股份有限公司),纯水仪(New Human Power I,韩国),紫外可见分光光度计(TU-1901,北京普析通用仪器有限公司),电子天平[ME104,梅特勒-托利多仪器(上海)有限公司],精密酸度计(pHs-2C,上海鸿盖仪器有限公司),电导率仪(DDS-308A,上海仪电科学仪器股份有限公司),多功能振荡仪(SHA-GW,金坛市科析仪器有限公司),离心机(TG18K,长沙东旺实验仪器有限公司)等。

试剂: HNO_3 、HF、HCl、 $HClO_4$ 、 H_2O_2 均为优级纯(国药集团化学试剂有限公司),其余试剂为分析纯,本研究用水均为超纯水。

1.3 污泥样品测定方法

污泥样品理化性质、营养学指标、重金属含量的测定方法参照《土壤农化分析》^[5]和 CJ/T 221—2005《城市污水处理厂污泥检验方法》^[6]。含水率用烘干称质量法测定,pH 值用酸度计测定,电导率(EC)用电导率仪测定,有机质含量用重铬酸钾外加热法测定,全氮含量用凯氏定氮法测定,全磷含量用碱熔-钼锑抗分光光度法测定,全钾含量用酸溶-火焰光度计法测定,Cu、Pb、Cd、Cr、Ni、Zn等元素含量用硝酸-盐酸-氢氟酸-高氯酸消解原子吸收分光光度计测定,As、Hg 含量用1:1 王水消解原子荧光光度计测定。重金属形态分析采用 BCR 连续提取法^[7],测定方法与重金属含量测定方法相同。在分析过程中,采用平行样、加标回收等措施进行质量控制。

1.4 污泥重金属农用生态风险评价

1.4.1 地累积指数法 采用地累积指数(I_{geo})法定量评价污泥重金属污染程度^[8]。地累积指数不仅取决于所测样品元素的浓度,还与元素的背景值选择有关,不同的背景值具有很大的差异,因此,评价获得的重金属污染程度也有所不同。 I_{geo} 的计算公式为

$$I_{\text{geo}} = \log_2\left(\frac{C_n}{k \times B_n}\right)_{\circ} \tag{1}$$

式中: I_{geo} 为地累积指数; C_n 为样品污泥中重金属不稳定态总和,此处为酸溶态、可还原态、可氧化态之和^[7]; B_n 为对应元素的背景值,采用中国土壤元素背景值——贵州省土壤作为背景值;k为消除各地岩石差异可能引起背景值的变动转换

系数,本研究取 k=1.5。 I_{cro} 分级标准见表 2。

表 2 地累积指数与污染程度分级

地累积指数	污染级别 (级)	污染程度
$I_{\mathrm{geo}} \leqslant 0$	0	无污染
$0 < I_{\text{geo}} \leq 1$	1	轻度污染
$1 < I_{\text{geo}} \leq 2$	2	偏中度污染
$2 < I_{\text{geo}} \leq 3$	3	中度污染
$3 < I_{\text{geo}} \leq 4$	4	偏重度污染
$4 < I_{\text{geo}} \leq 5$	5	重度污染
$I_{\rm geo} > 5$	6	严重污染

1.4.2 潜在生态危害指数法 采用潜在生态危害指数(*RI*) 法评价污泥中的重金属污染程度,定量划分重金属潜在的生态危害程度,将环境中每种污染物与多种污染物的影响进行综合评价^[9]。计算公式为

$$E_r^i = T_r^i \times \frac{C_n}{B}; (2)$$

$$RI = \sum E_{-0}^{i} \tag{3}$$

式中: E_r^i ,为重金属的潜在生态危害指数; T_r^i ,为某种重金属的毒性响应系数,Hakanson 对毒性系数制定的标准为 T_r^i (Cu) = 5, T_r^i (Pb) = 5, T_r^i (Cd) = 30, T_r^i (Cr) = 2, T_r^i (Ni) = 5, T_r^i (Zn) = 1, T_r^i (As) = 10, T_r^i (Hg) = $40^{[9]}$;RI 为多种重金属元素潜在生态风险指数。 E_r^i 和RI的分级标准见表 3。

表 3 重金属污染潜在生态风险指数法分级标准

潜在生态 危害指数	生态风险	生态风险 指数范围	生态风险
$E_r^i < 40$	低生态危害	RI < 150	低生态危害
$40 \le E_r^i < 80$	中等生态危害	$150 \leqslant RI < 300$	中等生态危害
$80 \le E_r^i < 160$	较高生态危害	$300 \leqslant RI < 600$	高生态危害
$160 \leq E_r^i < 320$	高生态危害	<i>RI</i> ≥600	极高生态危害
$E_r^i \geqslant 320$	极高生态危害		

2 结果与分析

2.1 污泥农用价值分析

由表4可知,各污水处理厂污泥含水率在69.95%~85.41%之间,pH值在6.29~7.30范围内,电导率在0.26~1.68 mS/cm之间。根据CJ/T309—2009《城镇污水处理厂污泥处置 农用泥质》^[10],物理指标要求含水率≤60%,酸碱度在5.5~9.0范围内,可以看出,各污水处理厂污泥的酸碱度满足标准要求,但各厂污泥含水率较高,不符合标准要求,须

要进行进一步脱水处理才能满足使用要求。各污水处理厂污泥有机质含量为 215. 24~475. 68 g/kg,全氮含量为 16. 07~55. 37 g/kg,全磷含量为 4. 63~15. 55 g/kg,全钾含量为 5. 62~7. 52 g/kg;根据 CJ/T 309—2009《城镇污水处理厂污泥处置 农用泥质》 $^{[10]}$,营养学指标应满足有机质含

量≥200 g/kg,氮+磷+钾含量≥30 g/kg,六盘水市污水处理 厂污泥有机质平均含量为329.76 g/kg,氮+磷+钾平均含量 为49.01 g/kg,均达到营养学规定指标,且与猪厩肥相比,六 盘水市城市污泥是高有机质、高氮、高磷含量的有机肥,具有 良好的农业利用前量。

表 4 污泥的理化性质与营养学指标

样品来源	含水率 (%)	pH 值	EC (mS/cm)	有机质含量 (g/kg)	全氮含量 (g/kg)	全磷含量 (g/kg)	全钾含量 (g/kg)	氮+磷+钾含量 (g/kg)
L1	71.27	7.15	0.99	215.24	16.07	4.63	7.15	27.85
L2	80.60	6.79	1.08	270.66	28.32	9.92	7.21	45.45
L3	69.95	7.30	0.26	227.96	17.57	5.02	7.08	29.67
L4	80.91	6.65	0.82	356.06	31.95	13.05	7.52	52.52
L5	85.41	6.29	1.28	475.68	55.37	15.55	7.17	78.09
L6	84.97	6.35	1.68	432.98	43.53	11.32	5.62	60.47
均值	78.85	6.76	1.02	329.76	32.14	9.92	6.96	49.01
CJ/T 309—2009	≤60	5.5 ~ 9.0	_	≥200	_	_	_	≥30
猪厩肥[11]				302	9.40	4.70	9.50	≥23.6

注:"一"表示无相应值。

2.2 污泥重金属含量分析

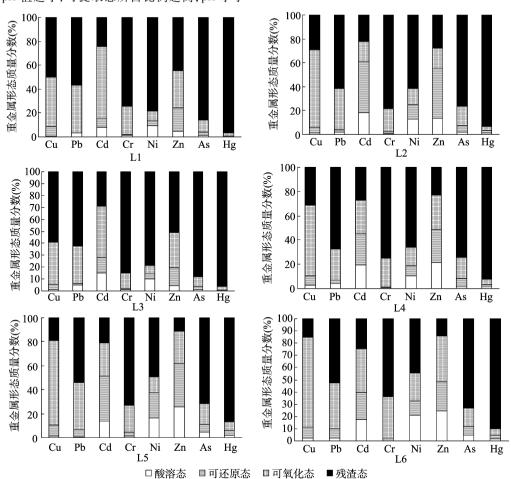
由表 5 可知,不同污水处理厂污泥重金属含量存在较大差异。其中 L4 的 Cu、Hg 含量最高,分别为 108.37、2.57 mg/kg,L2 的 Pb、Cd、Zn 含量最高,分别为 256.40、10.43、987.10 mg/kg,而 Cr、Ni、As 含量最高的是 L3,分别为87.10、49.67、28.93 mg/kg。8 种重金属平均含量表现为Zn>Pb>Cu>Cr>Ni>As>Cd>Hg,与贵州省土壤背景值相比,六盘水城市污泥重金属平均含量除 Cr、Ni、As外,均偏高;与2012年贵州省污泥重金属含量算数平均值相比,只有Pb含量偏高。按照农用泥质标准(CJ/T 309—2009),L1、L2、

L3、L4 污泥中 Cd 含量超出 A 级标准限值,低于 B 级标准限值,其余7 种重金属含量均满足 A 级标准,可以施用于油料作物、果树、饲料作物、纤维作物,但禁止施用于蔬菜、粮食作物;L5、L6 污水处理厂污泥中 8 种重金属含量均满足 A 级标准,对于蔬菜、粮食作物、油料作物、果树、饲料作物、纤维作物都可以施用。总体来说,六盘水市的城市污泥中 Cd 含量整体较高,尤其是 L1、L2、L3,这可能与当地高背景值有关,水城县 Cd 的平均含量分别是全省背景值的 5.0~5.6 倍,是国家三级土壤临界值的 1.5~1.8 倍[14]。

表 5 污泥中的重金属含量

拉日		重金属含量(mg/kg)								
样品来源	Cu	Pb	Cd	Cr	Ni	Zn	As	Hg		
L1	87.63	199.80	9.48	85.66	44.59	865.90	14.48	1.10		
1.2	75.41	256.40	10.43	78.54	27.61	987.10	11.81	1.24		
L3	63.17	158.20	7.24	87.10	49.67	696.20	28.93	1.52		
I.4	108.37	61.09	3.52	76.16	26.12	468.70	9.29	2.57		
1.5	105.61	40.94	2.48	38.91	18.43	397.10	3.84	1.37		
1.6	97.60	42.82	2.39	37.87	18.65	363.60	4.69	1.28		
最小值	63.17	40.94	2.39	37.87	18.43	363.60	3.84	1.10		
最大值	108.37	256.40	10.43	87.10	49.67	987.10	28.93	2.57		
均值	89.63	126.54	5.92	67.37	30.85	629.70	12.17	1.51		
贵州省土壤背景值[12]	32.00	35.20	0.659	95.90	39.10	99.50	20.00	0.11		
2012 年贵州省污泥重金属含量算数平均值[13]	124.68	67.68	8.53	209.62	37.10	1 182.60	13.75	1.90		
农用泥质标准(CJ/T 309—2009)A 级	500	300	3	500	100	1 500	30	3		
农用泥质标准(CJ/T 309—2009)B级	1 500	1 000	15	1 000	200	3 000	75	15		

2.3 污泥重金属形态特征分析


BCR 连续提取法中的重金属形态通常包括酸溶态、可还原态、可氧化态、残渣态,4 种重金属形态在环境中的移动性和生物有效性表现为酸溶态 > 可还原态 > 可氧化态 > 残渣态,其中酸溶态、可还原态、可氧化态为可提取态,重金属在一定环境条件下能释放出来,可被生物利用,而残渣态为稳定态,被认为在自然条件下对环境无污染风险^[7,15]。

由图 2 可知,各污水处理厂重金属形态存在一定的差异。 Pb、Cr、As、Hg 在各污水处理厂污泥残渣态质量分数超过 50%,主要以稳定态存在,生物有效性较差; Cu 在 L2、L4、L5、L6 污泥中可提取态分别为 70.65%、68.48%、81.24%、84.67%,生物有效性较高; Cd 在各污水处理厂中的可提取态质量分数分别为 76.00%、77.93%、70.79%、73.15%、78.95%、75.40%,生物有效性高; Ni 在 L5、L6 污泥中的可提取态质量分数分别为 50.36%、55.81%,生物有效性略高, Zn 在 L1、L2、L4、L5、L6 污泥中的可提取态质量分数分别为 55.60%、72.36%、77.34%、89.12%、86.20%,生物有效性较高。六盘水市城市污泥中 Cd 的生物有效性整体最高, Zn 次

之,因 Cd 毒性较大,在污泥农用时应加以重视。

由表 4 可知, L1、L3 污水处理厂的污泥 pH 值大于 7.0, L2、L4 污水处理厂的污泥 pH 值大于 6.5, L5、L6 污水处理厂 pH 小于 6.5。由图 2 可知, pH 值与重金属元素的可提取态存在相关性, pH 值越小, 可提取态所占比例越高; pH 小于

7.0 时,Cu、Zn 的可提取态质量分数都较高,则生物可用性高,Ni 在 pH 值小于 6.5 时,可提取态质量分数均超过了50%。因此,污泥农用时 pH 值应引起注意,可以通过调整 pH 值来调控重金属可提取态比例。

2.4 污泥重金属污染生态风险评价

2.4.1 地累积指数法风险评价 由表 6 可知, 六盘水市城市 污泥中的污染元素有 Cu、Pb、Cd、Zn、Hg, 其中 Cd 的污染程度 最高, 6 座污水处理厂污泥均受到不同程度的 Cd 污染, 其中 L1、L2、L3 为中度污染, L4、L5 为偏中度污染, L6 为轻度污染; Zn 的污染次之, 其中 L2 为中度污染, L1、L3、L4、L5、L6 为

偏中度污染; Cu 的污染程度处于第 3 位,其中 L2、L4、L5、L6 为轻度污染; Pb 的污染程度处于第 4 位,其中 L2 为偏中度污染, L1、L3 为轻度污染; Hg 的污染程度处于第 5 位,其中 L4、L5 为轻度污染; Cr、Ni、As 无污染。污染程度大小顺序为 Cd > Zn > Cu > Pb > Hg > Ni > Cr > As。

表 6 污泥重金属地累积指数与污染程度

污泥中重金属各形态分布

图2

*************************************	地累积指数									
样品来源	Cu	Pb	Cd	Cr	Ni	Zn	As	Hg		
L1	-0.15	0.78	2.84	-2.66	-2.58	1.70	-3.97	-2.04		
L2	0.06	1.02	2.99	-3.02	-2.36	2.29	-3.49	-1.04		
L3	-0.90	0.10	2.44	-3.31	-2.47	1.13	-3.05	-1.72		
L4	0.62	-1.27	1.43	-2.90	-2.62	1.20	-3.60	0.28		
L5	0.73	-1.49	1.09	-3.69	-2.59	1.13	-4.73	0.04		
L6	0.79	-1.28	0.92	-3.48	-2.37	1.04	-4.54	-0.34		
均值	0.19	-0.36	1.95	-3.18	-2.50	1.42	-3.90	-0.80		

2.4.2 潜在生态危害指数法风险评价 由表 7 可知,六盘水市城市污泥重金属潜在生态危害指数中的 E_r^{Cd} 、 E_r^{Hg} 较高,其

中 E_r^{Cd} 在 L1、L2 中存在极高生态危害,L3 为高生态危害,L4、L5、L6 为较高生态危害; E_r^{Hg} 在 L4、L5、L6 为中等生态危害;

 88.50%、85.07%、86.88%、56.48%、53.76、55.33%,在 RI 平均值中占76.05%, E_r^{Hg} 次之,因此六盘水城市污泥在农用时应特别注意 Cd 对土壤和环境的影响。

表 7	污泥重金属潜在生态风险危害指数和风险程度
~ ·	111亿美亚两角上土心外位占自身处理外位上及

样品来源		潜在生态风险危害指数						RI	多种重金属风险程度	
午四个你	Cu	Pb	Cd	\mathbf{Cr}	Ni	Zn	As	Hg	M	夕竹里並周八四任反
L1	6.77	12.89	321.40	0.47	1.25	4.89	0.96	14.55	363.18	高
L2	7.80	15.22	356.90	0.37	1.46	7.34	1.34	29.09	419.53	高
L3	4.01	8.03	244.92	0.30	1.35	3.29	1.81	18.18	281.90	中等
L4	11.53	3.10	121.55	0.40	1.22	3.45	1.24	72.73	215.21	中等
L5	12.41	2.67	95.60	0.23	1.24	3.29	0.57	61.82	177.83	中等
L6	12.93	3.09	85.13	0.27	1.45	3.08	0.65	47.27	153.86	中等
均值	9.24	7.50	204.25	0.34	1.33	4.22	1.10	40.61	268.59	中等

3 结论与讨论

六盘水市城市污泥含水率为69.95%~85.41%, pH值为6.29~7.30,电导率为0.26~1.68 mS/cm; 有机质平均含量为329.76 g/kg, 氮+磷+钾平均含量为49.01 g/kg, 除含水率外, 其他均符合规定理化性质和营养学指标。

城市污泥中重金属平均含量表现为 Zn > Pb > Cu > Cr > Ni > As > Cd > Hg, 与贵州省土壤背景值相比,除 Cr、Ni、As 外,均偏高;与 2012 年贵州省污泥重金属含量算数平均值相比,只有 Pb 含量偏高。L1、L2、L3、L4 污泥中 Cd 含量超出农用泥质 A 级标准限值,低于 B 级标准限值(CJ/T 309—2009),其余重金属含量均满足 A 级标准,L5、L6 污水处理厂污泥中的 8 种重金属含量均满足 A 级标准。

城市污泥重金属不同形态中 Cd 的可提取态较高,生物可利用较高,Zn 次之。pH 值与重金属元素的可提取态有相关性,pH 值越小,可提取态所占比例越高。

采用地累积指数法分析得出,六盘水市城市污泥中的污染元素有 Cu、Pb、Cd、Zn、Hg, 其中 Cd 污染最严重, 其次是 Zn > Cu > Pb > Hg, Cr、Ni、As 无污染; 潜在生态危害指数法 (RI) 分析结果表明, E_r^{Cd} 、 E_r^{Hg} 较高; 为 RI 的主要贡献者, L1、L2 污泥为高生态风险; L3、L4、L5、L6 污泥为中等生态风险。

六盘水城市污泥为高有机质、高氮、高磷含量的有机肥,污泥含水率较高,利用前应降低含水率;L1、L2、L3、L4 污泥允许施用于油料作物、果树、饲料作物、纤维作物,禁止施用于蔬菜、粮食作物;L5、L6 污泥允许施用于蔬菜、粮食作物、油料作物、果树、饲料作物、纤维作物。Cd 元素存在一定的污染和生态风险,在污泥处置和农业利用时应加以重视,制定相应防范措施。

参考文献:

[1]中华人民共和国环境保护部. 2015 年环境统计年报[EB/OL]. (2017-02-23)[2018-02-14]. http://www.mep.gov.cn/gzfw_13107/hjtj/hjtjnb/201702/P020170223595802837498.pdf. htm.

- [2]张 灿,陈 虹,余忆玄,等. 我国沿海地区城镇污水处理厂污泥 重金属污染状况及其处置分析[J]. 环境科学,2013,34(4): 1345-1350.
- [3] Yuan X Z, Huang H J, Zeng G M, et al. Total concentrations and chemical speciation of heavy metals in liquefaction residues of sewage sludge [J]. Bioresource Technology, 2011, 102(5):4104-4110.
- [4] 张惠芳,孙 玲,蔡申健,等. 城市污泥中重金属的去除及稳定化技术研究进展[J]. 环境工程,2014,32(12);82-86.
- [5] 鲍士旦. 土壤农化分析[M]. 3 版. 北京:中国农业出版社,2000: 30-106.
- [6]中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 北京:中国标准出版社,2006.
- [7]刘亚纳,郭旭明,周 鸣,等. 洛阳城市污水处理厂污泥中重金属形态及潜在生态风险评价[J]. 环境工程学报,2017,11(2):1217-1222.
- [8] Muller G. Index of geoaccumulation in sediments of the Rhine river [J]. Geological Journal, 1969, 2(3):108-118.
- [9] Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8):975 – 1001.
- [10]中华人民共和国住房和城乡建设部. 城镇污水处理厂污泥处置农用泥质: CJ/T 309—2009[S]. 北京:中国标准出版社, 2009.
- [11]全国农业技术推广中心. 中国有机肥料养分志[M]. 北京:中国农业出版社,1999.
- [12]国家环境保护局主持,中国环境监测总站.中国土壤元素背景值[M].北京;中国环境科学出版社,1990;330-483.
- [13]王雨生,刘鸿雁,李 瑞,等. 贵州省城市污泥重金属组成特征与农用风险评价[J]. 长江流域资源与环境,2014,23(3):392-300
- [14]何邵麟,龙超林,刘应忠,等. 贵州地表土壤及沉积物中镉的地球化学与环境问题[J]. 贵州地质,2004,21(4);245-250.
- [15] 孟国欣,查同刚,张晓霞,等. 北京市污水处理厂污泥重金属污染特征和生态风险评价[J]. 生态环境学报,2017,26(9): 1570-1576.