么大轩,张 彬,刘松涛,等. 基于 SNP 和 SSR 对甜玉米种质遗传多样性的评价[J]. 江苏农业科学,2019,47(7):45-50. doi:10.15889/j. issn. 1002-1302.2019.07.012

基于 SNP 和 SSR 对甜玉米种质遗传多样性的评价

么大轩,张 彬,刘松涛, Zenda Tinashe, 段会军

(河北农业大学/华北作物种质资源研究与利用教育部重点实验室,河北保定 071001)

摘要:利用单核苷酸多态性(single nucleotide polymorphism, 简称 SNP)与简单重复序列(simple sequence repeat, 简称 SSR)2种分子标记对23份甜玉米自交系进行遗传多样性评价。结果表明,6对针对sul基因的SNP引物分别在7790、8210、10550 bp位点处检测到22、17、23个自交系发生突变。23份甜玉米自交系在相似系数为0.55处被划分为4个SNP类群;用19对针对玉米10条染色体的SSR引物共检测出83个多态性位点,平均每对引物检测到的多态性位点数为4.4个,在相似系数为0.55处被划分为5个SSP类群。2种分子标记在类群划分中既存在一定的相关性,也存在一定的差异。用SNP、SSR法检测的平均遗传相似系数分别为0.64、0.71,表明23份甜玉米自交系存在比较丰富的遗传变异,种质资源较为丰富。

关键词:甜玉米;分子标记;SNP;SSR;聚类分析

中图分类号: S513.032 文献标志码: A 文章编号:1002-1302(2019)07-0045-05

甜玉米是玉米属的一个亚种,起源于美洲大陆,是一种集粮、果、蔬、饲于一体的经济型作物,人类种植和食用甜玉米已有100多年的历史[1]。甜玉米鲜穗可直接上市或加工,乳熟时籽粒中富含蛋白质、水溶性多糖、多种游离氨基酸和维生素,具有较高的营养价值、加工价值和经济价值。随着人们生活水平的提高,甜玉米也迎来了更多的消费者[2]。美国是世界上开展甜玉米育种研究最早的国家,早在1828年,美国人索布就发表了关于甜玉米研究的第1篇论文,1836年诺埃斯·达林培育出了第1个甜玉米品种达林早熟[3]。而我国对甜玉米的研究起步较晚,直到1968年,才由中国农业大学培育出了首个甜玉米品种北京白砂糖[4],到了20世纪80年代,又有一批新品种出现,如农梅 I 号、东甜 2 号、金甜 1 号、甜玉 2 号等,但是其应用和推广面积有限[5-6]。

从 20 世纪 90 年代至今,随着我国经济的发展、人民生活水平的提高以及甜玉米加工产品的出现,对甜玉米的需求量与种质资源遗传多样性的需求不断提高^[7]。但是,由于我国不是甜玉米的起源中心,很多材料依赖于从美国、泰国等海外引进,甜玉米的亲缘关系比较近,类型较单一^[8],从而严重影响了我国甜玉米育种的进一步发展。因此,对甜玉米的遗传多样性进行研究尤其重要。

近几年来,分子标记技术发展迅速,作为新的手段和方法已被用于检测玉米的遗传多样性,主要包括限制性内切酶片段长度多态性(restriction fragment length polymorphism,简称RFLP)、随机扩增多态性 DNA(random amplified polymorphic DNA,简称RAPD)、扩增片段长度多态性(amplified fragment

length polymorphism, 简称 AFLP)、简单重复序列(simple sequence repeat, 简称 SSR)、单核苷酸多态性(single nucleotide polymorphism, 简称 SNP)等分子标记技术。其中单个碱基变异的 SNP 作为第 3 代分子标记,具有密度高、分布广等优势,在水稻、玉米等植物性状标记分析、遗传图谱构建及遗传多样性分析等方面有广阔的应用前景^[9-12]。在玉米上,康奈尔Buckle 实验室和 Illumina 公司构建了高密度的 SNP 标记遗传连锁图谱,为分子育种提供了可靠的信息。 SSR 是一类由 1~6个碱基组成的基因串联重复而成的 DNA 序列,其长度一般较短,它们广泛分布于基因组的不同位置^[13]。 SSR 具有多态性水平高、遗传方式简单、结果重现性好、稳定可靠、需要的 DNA 量少且操作简单等特点^[14],被育种研究者们广泛使用^[15-16]。然而,目前利用分子标记对甜玉米进行遗传多样性研究的报道还较少。

为了综合 SNP 分子标记与 SSR 分子标记的优点,增强试验的准确性及稳定性,同时探究 2 种分子标记的联系与差异,本研究采用 SNP、SSR 2 种分子标记同时对 23 份甜玉米材料进行遗传多样性研究,以期为甜玉米育种提供理论依据。

1 材料与方法

1.1 试验材料

本研究采用的23份甜玉米自交系(均为sul甜玉米)和1份常规对照自交系由河北农业大学玉米研究室提供,其名称详见表1。

SNP 检测试验所用引物参照韩国 Shin 等研究设计的 6 对 SNP 引物^[17],详见表 2。SSR 检测试验所用引物参照 CIMMYT(国际玉米小麦改良中心)公布的针对玉米 10 条染色体的核心引物,从中筛选出 19 对带型清晰、稳定性好的引物进行 SSR 分析,相应的引物序列见表 3。以上引物均由北京天一辉远生物科技有限责任公司合成。

1.2 试验方法

本试验于2015年在河北农业大学种子科学与技术实验

收稿日期:2018-04-10

基金项目:国家重点研发计划(编号:C2017YFD0300901);河北省现代农业产业技术体系玉米产业创新团队建设项目(编号:HBCT2018020207)。作者简介:么大轩(1991一),男,河北唐山人,硕士,主要从事作物分子设计育种方面的研究。E-mail:807594570@qq.com。

通信作者:段会军,博士,教授,主要从事作物遗传资源的研究与利用工作。E-mail;hjduan@hebau.edu.cn。

表 1 23 份甜玉米自交系及 1 份堂规自交系的编号及名称

编号	自交系名称	编号	自交系名称
1	116327	13	116455
2	116329	14	116471
3	116353	15	116484
4	116359 - 60	16	116485
5	116377	17	116469
6	116377 – 78	18	紫 su5 - 3
7	116379	19	紫 su5 - 12
8	116385	20	紫 su5 - 3 - 3
9	116390	21	红 su5
10	116394	22	黄 su7 -8
11	116424	23	116375
12	116432	24	Mo17(常规,CK)

注:1~23号为甜玉米自交系,24号为常规自交系,用作对照。

室进行,甜玉米材料种植于河北农业大学三分厂试验田。取 0.5g 甜玉米鲜叶片,用十六烷基三甲基溴化铵(hexadecyl

表 2 SNP 引物序列

引物名称	引物序列 (5′→3′)
su1 - 7790 - R	GAAACTCTAAAGTGCCTACAC
su1 - 7790 - FC	GGGGAAAATCATAATCTAAGCC
su1 - 7790 - FT	GGGGAAAATCATAATCTAAGCT
su1 - 8210 - F	AGTGTAGCGCACTTTAGAGTTT
su1 - 8210 - RA	ATGATGCATATTCCAGCATAT
su1 - 8210 - RG	ATGATGCATATTCCAGCATAC
su1 - 10550 - R	CCCTGGCATTTACTCTTAGTTA
su1 - 10550 - FA	AAAGTGCGACTAACCATTTA
su1 - 10550 - FG	AAAGTGCGACTAACCATTTG

trimethyl ammonium bromide, 简称 CTAB) 法对供试的 23 份甜 玉米进行 DNA 提取,并用 NanoDrop ND1000 型紫外分光光度 计测定 DNA 分子 $D_{260 \text{ nm}}/D_{280 \text{ nm}}$ 及浓度,之后统一将浓度稀释 至 $100 \text{ ng/}\mu\text{L}$,于 $-20 \text{ }^{\circ}\text{ }$ 冰箱中保存备用。

表3 SSR 引物名称及序列

		表 3 SSR 引物名标及序列	
编号	引物名称	F 引物序列(5'→3')	R 引物序列(5′→3′)
1	bnlg 439	TTGACATCGCCATCTTGGTGACCA	TCTTAATGCGATCGTACGAAGTTGTGGAA
2	bnlg 2331	TCTGATATCATAAAGGAGGACCG	GGAGCTTGCGCTTTTTAACA
3	bnlg 125	GGGACAAAAGAAGAAGCAGAG	GAAATGGGACAGACAGACAAT
4	mmc0191	GGTGTTCAGTGAAAGGTTA	AAGATTTCCGCAAGGTTAAAC
5	umc2105	ACATACATAGGCTCCCTTTTTCCG	TCCCGTGACACTCTCTTTCTCTCT
6	bnlg1496	CTGGGCAGACAGCAACAGTA	AGCCAAAGACATGATGGTCC
7	phi072	ACCGTGCATGATTAATTTCTCCAGCCTT	GACAGCGCGCAAATGGATTGAACT
8	bnlg2291	CCTCTCGATGTTCTGAAGCC	GTCATAACCTTGCCTCCCAA
9	umc1225	CTAGCTCCGTGTGAGTGAGTGAGT	TTCCTTCTTTCCTGTGCAAC
10	bnlg161	GCTTTCGTCATACACACACATTCA	ATGGAGCATGAGCTTGCATATTT
11	phi299852	GATGTGGGTGCTACGAGCC	AGATCTCGGAGCTCGGCTA
12	bnlg1792	CGGGAATGAATAAGCCAAGA	GCGCTCCTTCACCTTCTTTA
13	phi116	GCATACGGCCATGGATGGGA	TCCCTGCCGGGACTCCTG
14	umc1741	AGACGAACCCACCATCATCTTTC	CGCTTGGCATCTCCATGTATATCT
15	phi080	CACCCGATGCAACTTGCGTAGA	TCGTCACGTTCCACGACATCAC
16	phi065	AGGGACAAATACGTGGAGACACAG	CGATCTGCACAAAGTGGAGTAGTC
17	bnlg1191	AATCATGCGTAGGCGTAGCT	GCCAGAGGAAAAAGAAGGCT
18	umc2163	AAGCGGGAATCTGAATCTTTGTTC	GAAATTGCTGGGGTTCTCATTTCT
19	bnlg1450	ACAGCTCTTCTTGGCATCGT	GACTTTGCTGGTCAGCTGGT

1.3 PCR 反应体系和条件

20 μL PCR 反应体系; 2 μL $10 \times Taq$ 缓冲液(含 Mg^{2+})、 1.6 μL dNTP(2.5 mmol/L)、1 μL 前引物、1 μL 后引物、0.2 μL Taq 酶 (2.5 U/L)、1 μL DNA 模板 (100 ng/μ L)、13.2 μL ddH_2O 。反应程序: 95 \mathfrak{C} 预变性 5 min; 95 \mathfrak{C} 变性 30 \mathfrak{s} , X \mathfrak{C} 退火[X = (前引物 $T_m +$ 后引物 $T_m)/2 - 1$, T_m 为理论退火温度] 45 \mathfrak{s} , 72 \mathfrak{C} 延伸 1 min, 35 \mathfrak{C} 循环; 72 \mathfrak{C} 延伸 10 min, 4 \mathfrak{C} 保存。

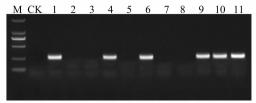
1.4 PCR 产物的检测

1.4.1 琼脂糖凝胶电泳 在每个 PCR 体系中加入 5 μ L 加样缓冲液 6 × loading buffer, 取 10 μ L 上样于 1.5% 琼脂糖凝胶上,于 180 V、300 mA、80 W 电泳 15 min,用 EB(溴化乙锭)显色,用 BioRAD 凝胶成像系统观察拍照,记录条带信息。

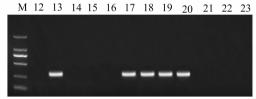
1.4.2 聚丙烯酰胺凝胶电泳 在每个 PCR 体系中加入 5 μ L 加样缓冲液 6 × loading buffer, 取 2 μ L 上样于 6% 聚丙烯酰胺凝胶上,于 300 V、200 mA、100 W 电泳 45 min,用银染法显

影,将胶置于灯箱上观察拍照,记录条带信息。

1.5 数据处理及分析方法


根据 PCR 产物电泳结果读取条带,同一长度处有带的记为1,无带的记为0,缺失的记为9,用 NTSYS Version 2.10e 软件进行聚类分析。

2 结果与分析

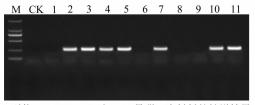

2.1 PCR 扩增结果分析

用 6 对针对 sul 基因设计的 SNP 引物进行 PCR 扩增,其中在 1~23 号供试甜玉米中均能检测到点突变,而对照常规玉米自交系 Mo17 在所检测的 3 个变异位点上均无扩增条带,即在检测的 3 个位点上均无变异,8210(A/G)位点的检测结果见图 1。

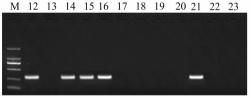
由表4可以看出,在7790位点处,有22个自交系发生突变,116327、116329、116353等15个自交系发生C碱基突变,116359-60、116377、116432等7个自交系发生T碱基突变。

a.引物 su1-8210-RA 对 1~11号甜玉米材料的扩增结果

c.引物 sul-8210-RA 对 12~23 号甜玉米材料的扩增结果 d.引物 sul-8210-RG 对 12~23 号甜玉米材料的扩增结果 M—DM2000 DNA marker,从上到下的大小依次为 2 000、1 000、750、500、250、100 bp; CK—对照 Mo17 图1 SNP 琼脂糖凝胶电泳检测结果


表 4 SNP 突变位点分析

4.3	变异位点的突变碱基		
自交系	7 790 bp	8 210 bp	10 550 bp
116327	С	A	A
116329	C	G	A
116353	C	G	A
116359 - 60	T	_	A
116377	T	G	A
116377 – 78	_	A	A
116379	C	G	A
116385	C	*	A
116390	C	A	A
116394	C	_	A
116424	C	_	A
116432	T	G	G
116455	C	A	G
116471	T	G	G
116484	C	G	G
116485	T	G	G
116469	T	A	A
紫 su5 -3	C	A	A
紫 su5 - 12	C	A	A
紫 su5 - 3 - 3	C	A	A
红 su5	T	G	A
黄 su7 -8	C	*	A
116375	С	*	A


注:*表示缺失,一表示未得到数据。

在829 位点处,有17 个自交系发生突变,116327、116377 - 78、116390 等8 个自交系发生 A 碱基突变,116432、116471、116484 等9 个自交系发生 G 碱基突变。在10550 位点处,23 个自交系全部发生突变,116432、116455、116471 等 5 个自交系发生 G 碱基突变,116469、116379、116385 等 18 个自交系发生 A 碱基突变。

通过对 10 条染色体的核心引物进行筛选,获得 19 个条带清晰、多态性强的 SSR 引物。利用筛选出的引物对供试的 23 份甜玉米材料进行 DNA 扩增,其中引物 bnlg439 的扩增条带如图 2 所示。对全部扩增结果进行统计分析,结果显示,扩

b.引物 su1-8210-RG 对 1~11 号甜玉米材料的扩增结果

2.2 遗传相似性分析

根据 2 种分子标记结果, 计算 23 份甜玉米的遗传相似系数, 其中 SNP 相似系数为 0.28~1.00, 平均遗传相似系数为 0.64; SSR 遗传相似系数为 0.47~0.95, 平均遗传相似系数为 0.71。由此可见, 2 种标记方法的平均遗传相似系数基本一致, 说明含有 sul 基因的甜玉米突变体的遗传背景存在比较丰富的遗传变异。

增出的条带数在4~11条之间,19对 SSR 引物共扩增出 114

条条带,其中多态性条带83条,平均每对引物检测到的多态

性位点为4.4个,多态性条带数占总条带数的73%。

2.3 聚类分析

当相似系数为 0.55 时,23 份甜玉米材料被划分为 4 个 SNP 类群(SNP groups,简称 SNPGs),分别为 SNPG I、SNPG II、SNPG II、SNPG II、SNPG II 和 SNPG IV (图 3)。由表 4 可以看出,SNPG II 包含 116327、116390、紫 su5 - 3、紫 su5 - 12、紫 su5 - 3 - 3、116377 - 78、116385、黄 su7 - 8、116375、116329、116353、116379、116394、116424 共 14 份材料,占 60.9%;SNPG II 仅含有 1 份材料,即 116455,占 4.3%;SNPG III、SNPG IV 各含有 4 份材料,分别为 116359 - 60、116377、红 su5、116469 和 116432、116471、116485、116484,各占供试材料的 17.4%。

由图 4 的 SSR 标记聚类结果发现,当相似系数为 0.55 时,23 份甜玉米自交系被分为 5 个类群(SSR groups,简称 SSRGs)。其中 SSRG I 包括紫 su5 - 3、紫 su5 - 12、黄 su7 - 8、116390、116329、116375、紫 su5 - 3 - 3 等 13 份材料; SSRG II 和 SSRG IV 分别包含 116359 - 60、116394、116424 和 116377 - 78、116469、116471; SSRG III 和 SSRG V 分别包含 116484、116485 和 116432、116455(表 5)。

3 讨论

玉米胚乳基因组内某一特定核苷酸位置发生转换,颠倒、插入、缺失等都有可能使其突变为甜玉米。su 突变体编码的蛋白质,即异淀粉酶是淀粉去分支酶的一种^[18-19],能使糖向淀粉的转化过程受阻,造成中间产物大量积累,因而发生相应突变的玉米中的蔗糖、还原糖含量显著高于普通玉米,使玉米未成熟籽粒中大量积累水溶性多糖^[20-21]。

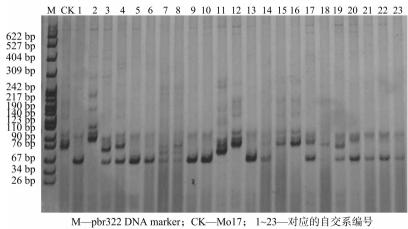


图2 引物 bnlg 439 检测的聚丙烯酰胺凝胶电泳结果

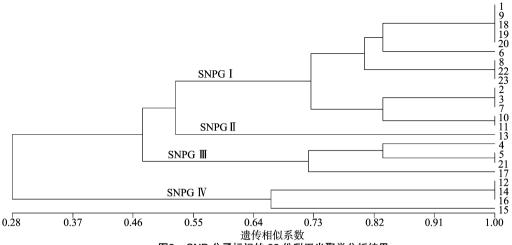


图3 SNP 分子标记的 23 份甜玉米聚类分析结果

表 4 SNP 分子标记的类群划分

SNP 类群	自交系
I	116327、116390、紫 su5 - 3、紫 su5 - 12、紫 su5 - 3 - 3、116377 - 78、116385、黄 su7 - 8、116375、
	116329 116353 116379 116394 116424
${ m II}$	116455
Ш	116359 - 60 、116377 、½∑ su5 、116469
IV	116432 \116471 \116485 \116484

图4 SSR 分子标记的 23 份甜玉米聚类分析结果

表 5 基于 SSR 分子标记的类群划分

SSR 类群	自交系
I	116327、116353、116377、紫 su5 - 3、紫 su5 - 12、黄 su7 - 8、116390、116329、116375、紫 su5 - 3 - 3、116385、红 su5、116375
II	116359 - 60 116394 116424
Ш	116484 \ 116485
IV	116377 – 78 、116469 、116471
\mathbf{V}	116432 116455

本试验应用 SNP、SSR 2 种分子标记研究 sul 型甜玉米。 sul 基因位于第4染色体的第8~66位点,在该位点先后发现 了 sul - am , sul - B n2 , sul - cr , sul - st 和 sul - R 等等位基 因[1]。本试验选用等位基因特异性 PCR 对 sul 基因的 7790、 8210 及 10550 这 3 个 SNP 位点进行分型,该方法具有成本 低、易操作等优点,但仍需要对引物很火温度以及反应条件讲 行一定的摸索。有报道指出,等位基因特异 PCR 反应体系具 有很高的灵敏性[22],然而试验中依然会有隐约的非特异性条 带出现, 本试验中检测的甜玉米在 7790、8210、10550 汶 3 个 突变位点中至少存在1~2个突变,PCR 反应对退火和延伸过 程的时间和温度比较敏感[17],因而不适宜的反应条件可能会 导致碱基错配,使得碱基发生非特异性结合。本试验通过适 当提高退火温度,较大程度地抑制了非特异性条带的产生,与 乐素菊等的研究结果^[23]一致。SSR 分子标记技术具有操作 简单、重复性好等优点,是近10年来常用的研究遗传多样性 的方法[24]。 赵波等利用 SSR 标记,对小豆种质资源进行了遗 传多样性分析, 检测到 86 个等位变异[25]。陈婧等曾利用 SSR 分子标记技术对玉米进行了遗传多样性分析[26-28]。胡 萍等利用 SSR 分子标记技术对贵州的 108 份玉米品种进行 了遗传多样性分析,得出其遗传相似系数在 0.44~0.99 之 间[29]。王利峰等利用表型和 SSR 分析了河南省玉米的遗传 多样性,得出其遗传相似系数为 0.63~0.89^[30]。而本试验利 用19对SSR引物对23份甜玉米自交系进行遗传多样性分 析,共检测出80个等位基因有变异位点,检测到的等位基因 数为4.4个, 遗传相似度系数为0.47~0.95, 表明甜玉米种 质来源较广泛,遗传基础丰富。本研究将供试材料划分为5 大类,从分子水平分析了甜玉米的群体遗传结构和多态性水 平,为研究亲本选配、新种质创制等提供了依据。

本试验利用 SNP、SSR 2 种分子标记,研究了甜玉米的遗传多样性,在甜玉米亲缘划分上,2 种分子标记存在一定的相关性,均能将紫 su5 - 3、紫 su5 - 12 和紫 su5 - 3 - 3 等姊妹系聚在一起,同时也存在一定的差异,如 SSR 标记比 SNP 标记划分的类群多1个。本研究结果也验证了用分子标记探究种质资源血缘关系的科学性、准确性,由于引物数量及试验材料数量的限制,要得到更精确的群体结构划分还需要进一步研究。

参考文献:

- [1]姚文华,韩学莉,汪燕芬,等. 我国甜玉米育种研究现状与发展对策[J]. 中国农业科技导报,2011,13(2):1-8.
- [2]赵久然,滕海涛,张丽萍,等. 国内外甜玉米产业现状及发展前景 [J]. 玉米科学,2003(专刊):98-100.
- [3] 曾孟潜,刘雅楠,杨涛兰,等. 甜玉米、笋玉米的起源与遗传[J]. 遗传,1999,21(3):44-45.
- [4]李小琴,吴景强,叶翠玉,等. 我国甜玉米育种概况及面临的挑战

- [J]. 作物杂志,2002(5):45-46.
- [5]吴燕丽. 广东省鲜食玉米产业发展现状与对策研究[D]. 武汉: 华中农业大学,2008.
- [6]石德权,郭庆法,汪黎明,等. 我国玉米品质现状、问题及发展优质食用玉米对策[J]. 玉米科学,2001(2):3-7.
- [7]番兴明,张世煌,谭 静,等. 根据 SSR 标记划分优质蛋白玉米自 交系的杂种优势群[J]. 作物学报,2003,29(1):105-110.
- [8] 戴惠学, 陆作楣. 甜玉米二环系选育的早代判别法研究[J]. 种子, 2006, 25(5): 30-34.
- [9] Rafalski A. Applications of single nucleotide polymorphisms in crop genetics[J]. Current Opinion in Plant Biology, 2002, 5 (2):94 – 100.
- [10] Jones E S, Sullivan H, Bhattramakki D, et al. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (*Zea mays L.*) [J]. Theor Appl Genet, 2007, 115(3):361-371.
- [11] Varshney R K, Thiel T, Sretenovic Rajicic T, et al. Identification and validation of a core set of informative genic SSR and SNP markers for assaying functional diversity in barley [J]. Mol Breeding, 2008, 22(1):1-13.
- [12] Pindo M, Vezzulli S, Coppola G, et al. SNP high throughput screening in grapevine using the SNPlex[™] genotyping system [J]. BMC Plant Biology, 2008, 8:12 - 17.
- [13]曹永国. SSR 标记在玉米杂种优势及遗传图谱中的应用研究 [D]. 北京:中国农业科学院,2000.
- [14] Barcaccia G, Lucchin M, Parrini P. Characterization of a flint maize (*Zea mays* var. *indurate*) Italian landrace; II. Genetic diversity and relatedness assessed by SSR and Inter SSR molecular markers. Genetic Resource and Crop Evolution, 2003, 50:253 271.
- [15] Yao Q L, Yang K C, Pan G T, Rong T Z. Genetic diversity of maize (*Zea may* L.) landraces from southwest China base on SSR data [J]. Journal of Genetics and Genomics, 2007, 34(9):851-860.
- [16] Liu Z Z, Guo R H, Zhao J R, et al. Population structure and genetic diversity of maize landraces from the southwest maize region of China [J]. Maydica, 2009, 54(1):63-76.
- [17] Shin J H, Kwon S J, Lee J K, et al. Genetic diversity of maize kernel starch synthesis genes with SNAPs[J]. Genome, 2006, 49 (10): 1287 1296.
- [18]王虎义. 玉米胚乳突变体 Su5 遗传分析和基因定位[D]. 长春: 吉林大学,2012.
- [19] 杨泉女,王蕴波. 甜玉米胚乳突变基因的研究进展及其在育种中应用的策略[J]. 分子植物育种,2005,3(6):125-130.
- [20]李学渊,刘纪麟. 玉米胚乳突变基因与互作对籽粒成份的影响 III. sul 基因与 sh2、bt2 基因的互作效应及其利用价值[J]. 作物学报,1993,19(6):509-514.
- [21] East E M, Hayes H K. Inheritance in maize [J]. Conn Agric Exp Stn Bull, 1911, 167; 1-142.

温书香,安利民,赵 协,等. 猎伪狂犬病毒实时荧光定量 PCR 检测方法的建立及初步应用[J]. 江苏农业科学,2019,47(7):50-53. doi:10.15889/j.issn.1002-1302.2019.07.013

猪伪狂犬病毒实时荧光定量 PCR 检测方法的建立及初步应用

温书香,安利民,赵 协,张 军,潘燕燕,葛位西 (河南省漯河市动物疫病预防控制中心,河南漯河 462300)

摘要:为建立一种快速、特异、鉴别诊断猪伪狂犬病毒野毒感染与疫苗免疫株,参考 GenBank 上公布的猪伪狂犬病毒 gE 基因序列设计了 1 对引物,以猪伪狂犬病毒核酸作为模板,PCR 方法将扩增得到的核酸序列克隆到 PEGM – 18T 载体上,将克隆载体转化到 DH5α 感受态细胞中,测序鉴定阳性重组质粒作为标准品建立猪伪狂犬病毒荧光定量 PCR 检测方法。结果表明,本研究所建立的猪伪狂犬病毒荧光定量 PCR 方法检测灵敏度可达 10 拷贝,与蓝耳病毒、猪细小病毒、猪瘟病毒、猪圆环病毒不发生交叉反应,具有良好的特异性和可重复性。此外,对 33 份疑似猪伪狂犬病料也作了检测,结果表明,2 份病料均为阳性。本研究建立的猪伪狂犬病毒实时荧光定量 PCR 检测方法具有灵敏度高、特异性强、重复性好、不发生交叉反应等优点,可用于日常猪伪狂犬病毒野毒感染与疫苗免疫株的鉴别诊断。

关键词:猪伪狂犬病毒;荧光定量 PCR 技术;灵敏度;标准曲线

中图分类号: S858.285.3 文献标志码: A 文章编号:1002-1302(2019)07-0050-04

猪伪狂犬病(PRV)是由称猪疱疹病毒感染引起的一种高度接触性、传染性疾病。猪是本病的传染源及自然宿主,本病的暴发常可引起妊娠母猪的流产率增高、仔猪的神经症状、公猪因睾丸炎丧失种用价值以及成年猪的呼吸系统疾病,每年给我国养猪业造成严重的经济损失[1-3]。任何年龄段的猪感染 PRV 后均能形成潜伏感染,感染 PRV 的猪终身带毒。在一定条件下 PRV 病毒可以被激活,引起隐性猪的复发性感染和散毒。因此,及时地诊断 PRV 是预防和控制该病的有效手段。在病原学诊断方法中,荧光定量 PCR 方法具有灵敏度高、特异性强、快速高通量等优点,广泛应用于多种动物疫病的诊断[4]。本研究根据 PRV 病毒核酸设计了 1 对特异性引物,建立了一种快速鉴别诊断 PRV 病毒的荧光定量 PCR 方

收稿日期:2017-11-22

基金项目:2015年河南省漯河市青年拔尖人才支持计划。

作者简介:温书香(1988—),女,河南商丘人,硕士,初级兽医师,主要 从事猪伪狂犬病研究。E-mail;1327372534@qq.com。

通信作者:赵 协,硕士,中级兽医师,主要从事猪伪狂犬病研究。 E-mail;wiwj6969@126.com。

acacacaciónescacacacacacacacacacacacacac

- [22] Bottema C D K, Sarkar G, Cassay J D, et al. PCR amplification of specific alleles; a general method of rapidly detecting mutations, polymorphisms and haplotypes [J]. Meth Enzymol, 1993, 288 (1);
- [23] 乐素菊,刘鹏飞,曾慕衡,等. 超甜玉米 bt2 基因 SNP 位点的分析及分子标记辅助筛选[J]. 西北农林科技大学学报(自然科学版),2012,40(11);73-78.
- [24]江云珠. 中国稻种资源同工酶和 SSR 标记遗传多样性研究 [D]. 北京:中国农业科学院,2002.
- [25]赵 波,叶 剑,金文林,等. 不同类型小豆种质 SSR 标记遗传 多样性及性状关联分析 [J]. 中国农业科学,2011,44(4):673-682.

法,为河南省漯河市猪伪狂犬病的早期鉴别诊断和病毒分离 提供了一种快速检测和定性的方法,为后续猪伪狂犬病的净 化提供技术支撑。

1 材料与方法

1.1 材料

- 1.1.1 病料采集 漯河市问十乡一散养户母猪存栏量 24 头,其中初产母猪 8 头,经产母猪 16 头。2016 年 11 月 15 日夜里该养猪场 1 头经产母猪产仔 15 头,2 d 晚上有 4 头仔猪表现体温升高、食欲不振、精神萎靡、站立不稳等症状,3 d 早上有 5 头仔猪相继死亡,另有 5 头仔猪相继发病并出现相似的临床症状,1 头仔猪表现为典型的猪伪狂犬病临床症状,犬卧姿势、原地转圈运动、叫声嘶哑,随后体温下降很快死亡。根据临床症状和剖检结果判定为疑似猪伪狂犬病,对发病和死亡的仔猪进行无菌采血,并采集心脏、肝脏、肾脏、脑、脾脏等组织进行充分研磨,用于 PRV 病毒的鉴定。
- 1.1.2 毒株、试剂及仪器设备 本研究所用猪伪狂犬病毒细胞培养物,由河南省疫控中心赠送;猪伪狂犬病毒 gE、gB 抗

,cycycycycycycycycycycycycycycycycycyc

- [26]陈 婧,李建平. 西北地区糯玉米自交系遗传多样性研究[J]. 玉米科学,2014,22(3);29-35.
- [27]王凤格,田红丽,赵久然,等. 中国 328 个玉米品种(组合) SSR 标记遗传多样性分析[J]. 中国农业科学,2014,47(5):856 864.
- [28]李齐向,张小中,涂前程,等. 基于 SSR 分子标记的青贮玉米自交系遗传多样性分析[J]. 福建农业学报,2013,28(4):320-323.
- [29] 胡 萍,杨恩琼,施文娟,等. 贵州 108 份地方玉米品种的 SSR 遗传多样性分析[J]. 种子,2012,9(9):61-65,68.
- [30] 王利锋,李会勇,唐保军,等. 利用表型和 SSR 标记分析河南省 玉米地方品种的遗传多样性[J]. 中国农业科学,2009,42(4): 1136-1144.