焦金英,姬星宇,李自波,等. 不同产地鱼腥草中 4 种活性成分分析评价 [J]. 江苏农业科学,2020,48(1):193-199. doi:10.15889/j. issn. 1002-1302.2020.01.037

不同产地鱼腥草中4种活性成分分析评价

焦金英1, 姬星宇1, 李自波3, 李国辉1, 王彦辉1, 余祖功2

(1. 商丘美兰生物工程有限公司,河南商丘 476000; 2. 南京农业大学,江苏南京 210095; 3. 河南普华基因科技有限公司,河南郑州 450000)

摘要:研究旨在建立一种鲜鱼腥草蒸馏液中 4 种活性成分 4 - 萜品醇、 α - 松油醇、乙酸龙脑酯、甲基正壬酮的含量测定的气相色谱法,应用该方法测定不同产地鱼腥草的 4 种活性成分含量。参照鱼腥草注射液质量标准,建立 4 种活性成分含量测定的前处理和气相色谱检测法,并对其进行方法学验证;应用所建方法对湖北省、四川省、贵州省、广东省广州市 4 个地区的鲜鱼腥草中活性成分进行测定分析。结果表明,所建立的方法专属性强,4 种活性成分在 $0.1 \sim 1.5 \, \text{mg/mL}$ 的范围内,相关系数均大于 0.999,线性关系优良,方法重复性试验样品中 4 种成分平均 $RSD \leq 1.2\%$,中间精密度试验样品中 4 种成分平均 $RSD \leq 1.3\%$,精密度好,回收率在 $80\% \sim 120\%$ 之间,准确度高。测得湖北省、四川省、贵州省的 4 种成分含量均符合规定,其中以湖北和四川地区含量相对较高。上述研究可为鱼腥草的药材选择、鱼腥草药材内在质量的综合评价和全面控制提供新的参考依据。

关键词:鱼腥草;不同产地;活性成分;气相色谱法

中图分类号: R284.1 文献标志码: A 文章编号:1002-1302(2020)01-0193-07

鱼腥草为三白草科植物蕺菜(Houttuynia cordata Thunb.)的新鲜全草或干燥地上部分,始载于《名医别录》,其后历代本草文献都有记载"以清解肺热见长,为治肺壅之要药"[1-3]。鱼腥草味辛能行散,微寒,归肺经,有清热解毒、消痈排脓、利尿通淋等功效,用于肺痈吐脓、痰热喘咳、热痢、热淋、臃肿疮毒等病症^[4],自古以来就被视为常用中药之一,尤其对治疗肺痈有特殊疗效。《本草经疏》等古

收稿日期:2019-11-05

基金项目:河南省重大科技专项(编号:181100110500)。

作者简介:焦金英(1988—),女,河南巩义人,硕士,研究方向为中兽 药开发。E-mail:819712823@qq.com。

通信作者:余祖功,教授,研究方向为兽药新制剂研发、新兽药作用及药动学、新兽药注册。E - mail;yuzugong@ njau. edu. cn。

- [11]吴少清,张书海. 淮安市盐化工业中氯化物对地表水的污染与防治[J]. 江苏环境科技,2005,18(增刊1):61-62.
- [12] 林东昕,吴月娇,徐蕴芹,等. 胃癌危险性不同人群膳食硝酸盐、亚硝酸盐及维生素 C 摄入量[J]. 营养学报,1988,10(3): 234-239.
- [13] 张志国,王光银,孙健全. 泡菜中亚硝酸盐含量动态研究[J]. 中国调味品,2008,33(4):40-42.
- [14] Sen N P, Seaman S W, Baddoo P A, et al. Formation of N nitroso N methylurea in various samples of smoked/dried fish, fish sauce, seafood, and ethnic fermented/pickled vegetables following incubation with nitrite under acidic conditions[J]. Journal of Agricultural and Food Chemistry, 2001, 49 (4): 2096 2103.

籍一向认为鱼腥草是"治痰热壅肺,发为肺痈吐脓血之要药。"《本草纲目》中认为:鱼腥草能散热毒痈肿^[5-8]。现代药理学上鱼腥草有抗菌、抗病毒、增强免疫、抗炎镇痛、利尿止血、通过调节细胞周期和诱导凋亡而抗肿瘤等作用^[9-10]。

鱼腥草中含有黄酮类、甾醇类等多种化合物,而挥发油为其主要有效成分。有效成分为鱼腥草素、葵酰乙醛、月桂醛、月桂烯、甲基正壬酮等,还包括多酚类活性成分:蕺菜碱、槲皮素、槲皮苷、绿原酸、亚油酸等^[11-13]。《中国兽药典》2015 年版二部中收录的"鱼腥草注射液"主要以鱼腥草挥发油中的4-萜品醇、α-松油醇、甲基正壬酮和乙酸龙脑酯进行质量控制^[14]。本研究发现,不同产地鱼腥草挥发油中4种有效成分含量存在很大差异,因此选

[15]王 英,周剑忠,李 清,等. 植物乳杆菌 SD-7 的分离鉴定及 其亚硝酸盐降解特性[J]. 中国食品学报,2016,16(7):97-

- [16]王 武,邓 烈,何绍兰,等. 不同套袋时间对早香橘橙果实色 泽的影响[J]. 中国农学通报,2007,23(7):415-421.
- [17] 胡位荣,张昭其,季作梁,等. 荔枝冷害过程中果皮色泽、花色素 苷和类黄酮含量的变化[J]. 园艺学报,2004,31(6):723 726
- [18] 王立霞. 花椒对3种泡菜自然发酵过程中亚硝酸盐含量的影响研究[J]. 包装与食品机械,2016,34(4):10-14.
- [19] 葛 焱,郭双霜,陈安均. 泡菜中亚硝酸盐消长规律及调控技术研究进展[J]. 食品工业科技,2015,36(4):382-385,390.

取贵州省、四川省、广东省广州市、湖北省4地的鱼 腥草进行比较分析,以期为鱼腥草的质量标准、资 源评价及进一步的资源开发利用提供参考依据。

1 材料与方法

1.1 材料

1.1.1 仪器和药品 Trace1300 气相色谱仪,赛默 飞世尔;BT125D 电子分析天平,赛多利斯。

4 - 萜品醇对照品,批号:111967 - 201501,中国食品药品检定研究院;α - 松油醇,批号:111859 - 201503,中国食品药品检定研究院;甲基正壬酮,纯度≥99.8%,批号:110834 - 201603,中国食品药品检定研究院;乙酸龙脑酯,纯度≥99.6%,批号:110759 - 201105,中国食品药品检定研究院;正己烷,色谱纯,山东禹王化工公司;无水硫酸钠,分析纯,天津市恒兴化学试剂制造有限公司。

鲜鱼腥草药材为湖北省、四川省、贵州省、广东 省广州市4个产地实地采摘。

1.2 方法

1.2.1 鱼腥草挥发油提取 分别取湖北省、四川省、贵州省、广东省广州市4个产地鲜鱼腥草各2000g,水蒸气蒸馏,收集初馏液2000mL,再进行重蒸馏,收集重蒸馏液约1000mL,即得[14]。

1.2.2 供试品溶液的制备 精确量取鱼腥草蒸馏液 60 mL,置圆底烧瓶中,连接挥发油测定器,自测定器上端加水充满刻度部分,加入正己烷 1.0 mL,连接回流冷凝管,加热至沸,保持微沸 40 min,冷却至室温,分取正己烷层,加无水硫酸钠约 0.4 g,振摇,正己烷液移至 2 mL 量瓶中,并用正己烷适量洗涤无水硫酸钠,洗涤液并入同一量瓶中,加正己烷稀释至刻度,摇匀,即得。

1.2.3 对照品溶液的制备 甲基正壬酮对照品溶液:取甲基正壬酮对照品适量,精确称定,加正己烷制成每1 mL 含 0.25 mg 的溶液,即得。

混合对照品溶液:取4-萜品醇、α-松油醇、乙酸龙脑酯、甲基正壬酮适量,精确称定,加正己烷制成每1 mL含0.25 mg的溶液。

1.2.4 GC 色谱条件 色谱柱: DB – 17MS 毛细管 气相色谱柱(30 m×0.25 mm,0.25 μ m);程序升温: 初始温度 75 ℃,保持 5 min,以 5 ℃/min 的速率升至 150 ℃,保持 5 min,再以 10 ℃/min 升至 250 ℃; 进样口温度为 250 ℃;检测器(FID)温度为 250 ℃; 流速为 1 mL/min,分流进样,分流比:10:1。理论

板数按甲基正壬酮峰计算应大于10000。

1.2.5 专属性考察 分别按照"1.2.2"节和 "1.2.3"节的方法制备供试品溶液、混合对照品溶 液、阴性对照溶液;精确吸取供试品溶液、混合对照 品溶液、阴性对照溶液各1 µL,分别注入气相色谱 仪,记录色谱图。

1.2.6 线性关系考察 分别取 4 - 萜品醇、α - 松油醇、乙酸龙脑酯、甲基正壬酮对照品适量,制成终质量浓度为 1.5 mg/mL 的混合对照品溶液,取此混合对照品溶液依次倍比稀释,分别制成质量浓度为 0.75、0.38、0.19、0.09 mg/mL 的溶液,各取 1 μL 进气相色谱仪检测,记录色谱图,以峰面积为纵坐标(y),以对照品溶液的质量浓度为横坐标(x)绘制标准曲线,计算每个成分的回归方程、相关系数和线性范围。

1.2.7 精密度考察

1.2.7.1 重复性试验 取鱼腥草蒸馏液按 "1.2.2"节供试品溶液的制备项下方法平行制备供 试品溶液 6 份,分别注入气相色谱仪,记录峰面积, 计算 *RSD*。

1.2.7.2 中间精密度试验 分别由 3 个试验人员, 分别在 3 d 内,按"1.2.2"节方法制备供试品溶液, 每人重复 2 次,分别进样分析,记录峰面积,计算 RSD。

1.2.8 稳定性试验 取同一份供试品溶液于室温下放置 0.2.4.8.12 h 分别进样检测,记录峰面积,计算 RSD。

1.2.9 准确度试验 分别制备相当于标示量 80%、100%、120%的样品,每个质量浓度平行3个 样品。按照含量测定项下方法制备样品测定,记录 峰面积和色谱图,计算回收率。

1.2.10 不同产地鲜鱼腥草中活性成分评价 精确称取 4 个产地的鱼腥草蒸馏液 60 mL 各 1 份,按照"1.2.2"节方法制备供试品溶液,按照"1.2.3"节方法制备混合对照品溶液,分别精确吸取供试品溶液和对照品溶液各 1 μL 注入气相色谱仪,记录 4 种活性成分的峰面积,以外标法计算含量,对比 4 个产地鲜鱼腥草中活性成分的含量差异。

2 结果与分析

2.1 专属性考察结果

精确吸取供试品溶液、混合对照品溶液、阴性 对照溶液各 1 μL,分别注入气相色谱仪,记录色谱 图(图1),各成分保留时间和分离度见表1。由图1可见,阴性对照溶液色谱图中未见与对照溶液色谱图中4-萜品醇、α-松油醇、乙酸龙脑酯、甲基正壬

酮相同保留时间的色谱峰,表明阴性无干扰。供试品和对照品溶液中4个成分的峰分离度良好。

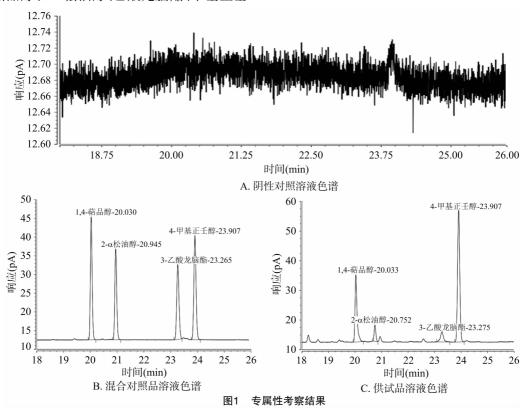


表1 专属性考察结果

样品	4 - 萜品醇		α-松油醇		乙酸龙脑酯		甲基正壬酮	
	保留时间(min)	分量度	保留时间(min)	分量度	保留时间(min)	分量度	保留时间(min)	分量度
对照品溶液	20.032	7.350	20.947	16.145	23.265	4.170	23.907	nd
供试品溶液	20.032	5.865	20.752	16.715	23.275	3.795	23.908	nd
阴性对照溶液	_		_		_		_	

2.2 线性关系考察结果

分别取 4 - 萜品醇、α - 松油醇、乙酸龙脑酯、甲基正壬酮对照品适量,制成终质量浓度为 1.5 mg/mL的混合对照品溶液,取此混合对照品溶液依次倍比稀释,分别制成质量浓度为 0.75、0.38、0.19、0.09 mg/mL的溶液,各取 1 μL进气相色谱仪检测,

记录色谱图,以峰面积为纵坐标(y),以对照品溶液的质量浓度为横坐标(x)绘制标准曲线,每个成分的线性回归方程、相关系数和线性范围见表 2,标准曲线见图 2。由表 2、图 2 可见,4 种成分在 0.1~1.5 mg/mL 的范围内,相关系数均大于 0.999,线性关系良好。

表 2 鱼腥草四种化学成分的保留时间、回归方程、相关系数和线性范围

成分	保留时间 (min)	回归方程	r^2	线性范围 (mg/mL)
4 - 萜品醇	20.041	$y = 4.077 \ 1x - 0.019 \ 5$	0.999 8	0.1~1.5
α-松油醇	20.954	$y = 4.419 \ 3x - 0.028 \ 9$	0.999 8	0.1~1.5
乙酸龙脑酯	23.272	y = 3.8477x - 0.0121	0.999 8	0.1~1.5
甲基正壬酮	23.908	$y = 4.215 \ 0x - 0.018 \ 7$	0.999 8	0.1~1.5

2.3 精密度考察结果

取鱼腥草蒸馏液平行制备供试品溶液 6份,分

别取1 μL 进样检测,记录峰面积,计算 RSD,测定结果见表3。从表3可以看出,测得样品中4 - 萜品

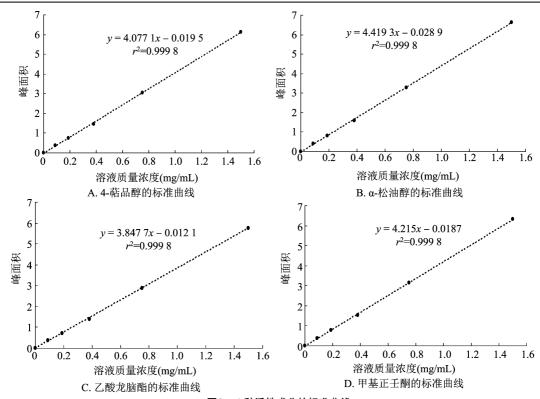


图2 4 种活性成分的标准曲线

表 3 精密度考察的重复性试验结果

还从古八		峰面积							
活性成分	第1份	第2份	第3份	第4份	第5份	第6份	平均值	(%)	
4-萜品醇	2.074	2.049	2.059	2.052	2.083	2.026	2.057	0.98	
α-松油醇	0.428	0.424	0.427	0.426	0.434	0.424	0.427	0.87	
乙酸龙脑酯	0.485	0.469	0.472	0.469	0.484	0.464	0.474	1.83	
甲基正壬酮	4.469	4.417	4.432	4.422	4.497	4.436	4.434	1.01	

醇、α-松油醇、乙酸龙脑酯、甲基正壬酮峰面积的 RSD分别为 0.98%、0.87%、1.83%、1.01%,表明 本试验测定方法的重复性良好。分别由 3 个试验人 员,分别在 3 d 内,制备供试品溶液,每人重复 2 次,分 别进样分析,记录峰面积,计算 RSD,结果见表 4。由表 4 可见,测得 4 - 萜品醇、 α - 松油醇、乙酸龙脑酯、甲基正壬酮峰面积的 RSD 分别为 1.33%,1.34%,1.32%,1.36%,表明本试验中间精密度良好。

表 4 中间精密度试验结果

		峰面积								
活性成分	第1人第1天		第2人	第2人第2天		第3人第3天		RSD (%)		
	第1次	第2次	第1次	第2次	第1次	第2次	平均值	(10)		
4 - 萜品醇	2.494	2.541	2.513	2.585	2.568	2.545	2.541	1.33		
α-松油醇	1.976	2.011	1.992	2.050	2.034	2.019	2.014	1.34		
乙酸龙脑酯	1.958	1.996	1.972	2.030	2.013	2.001	1.995	1.32		
甲基正壬酮	2.613	2.662	2.633	2.711	2.692	2.666	2.663	1.36		

2.4 样品放置稳定性考察结果

取同一份供试品溶液于室温下放置 0、2、4、8、12 h 分别进样检测,记录峰面积,计算 RSD,计算结果见表 5。从表 5 可以看出,不同时间点的 4 - 萜品醇、α - 松油醇、乙酸龙脑酯、甲基正壬酮峰面积的 RSD 分别为 1.35%、1.57%、1.30%、1.44%,表明

供试品溶液在室温下放置 12 h 稳定。

2.5 准确度试验结果

分别制备相当于标示量 80%、100%、120% 的样品,每个浓度平行 3 个样品。测得峰面积,计算回收率见表 6。

表 5 样品放置稳定性考察试验结果

活性成分 一		放置不同时间峰面积							
	0 h	2 h	4 h	8 h	12 h	平均值	(%)		
4 - 萜品醇	2.075	2.137	2.071	2.076	2.106	2.093	1.35		
α-松油醇	0.818	0.849	0.829	0.835	0.848	0.836	1.57		
乙酸龙脑酯	0.452	0.467	0.456	0.457	0.463	0.459	1.30		
甲基正壬酮	2.898	2.999	2.938	2.954	2.997	2.957	1.44		

表 6 鱼腥草 4 种化学成分准确度试验结果

—————————————————————————————————————	-E FI	回收率(%)						
百分比(%)	项目	4-萜品醇	α - 松油醇	乙酸龙脑酯	甲基正壬酮			
80	平行1	77.72	80.38	79.99	80.67			
	平行2	78.21	79.91	79.51	80.05			
	平行3	78.55	80.08	79.15	79.93			
	平均值	78.16	80.12	79.55	80.22			
	RSD(%)	1.77	1.55	1.33	1.89			
100	平行1	99.70	98.65	98.46	98.47			
	平行2	99.56	99.89	99.98	99.88			
	平行3	100.74	101.46	101.56	101.65			
	平均值	100	100	100	100			
	RSD(%)	1.11	1.37	1.50	1.49			
120	平行1	117.69	120.55	120.67	118.76			
	平行2	118.40	119.86	119.30	117.66			
	平行3	116.28	116.04	114.82	112.99			
	平均值	117.46	118.82	118.26	116.47			
	$RSD(\ \%\)$	1.02	1.57	1.79	1.81			

2.6 不同产地鱼腥草4种成分测定结果

精确称取 4 个产地的的鱼腥草蒸馏液 60 mL 各 1 份,制备供试品溶液和混合对照品溶液,进样检测,记录色谱见图 3,测定 4 种活性成分的峰面积,以外标法计算含量结果见表 7。《中国兽药典》2015 年版 2 部规定鱼腥草注射液中 4 - 萜品醇/参照物 (0.25 μg/μL)峰峰面积比值应不得低于 0.15。从表 7 可以看出,湖北省、四川省、贵州省 3 个产地鱼腥草 4 - 萜品醇含量均符合药典规定。其中以湖北

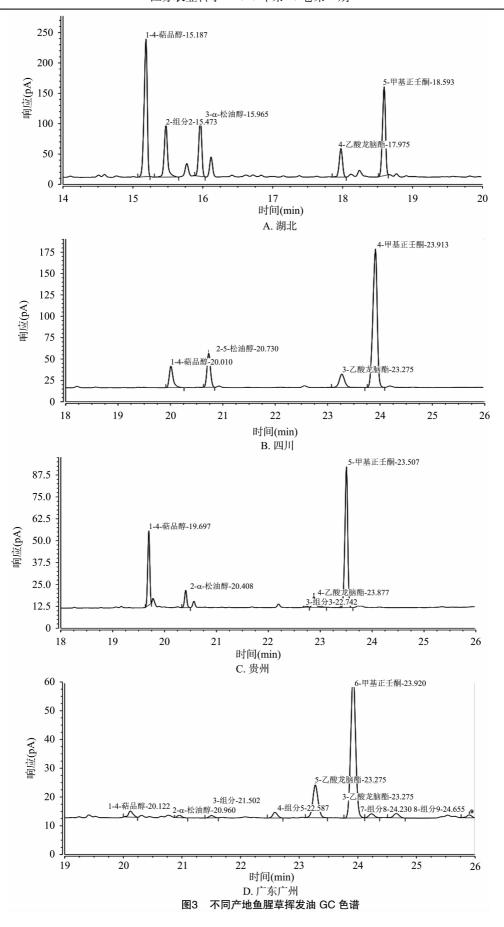

地区鱼腥草挥发油中 4 种成分含量较高,尤其是 4 - 萜品醇含量;四川地区鱼腥草挥发油中则甲基正 壬酮含量最为突出;贵州地区鱼腥草挥发油中 4 - 萜品醇、甲基正壬酮含量较高,但α-松油醇、乙酸龙脑酯含量明显低于其他地区;广东广州地区鱼腥草挥发油中 4 - 萜品醇含量不符合药典规定,但甲基正壬酮含量较高,乙酸龙脑酯含量也高于贵州地区。总的来说,以湖北、四川地区鱼腥草质量较佳,4种主要成分含量相对较高。

表7 不同产地鱼腥草4种化学成分含量测定结果

产地 -		4 种活性成分含量(mg/mL)						
	4 - 萜品醇	α-松油醇	乙酸龙脑酯	甲基正壬酮	4-萜品醇/参照物比值			
湖北	1.446 ± 0.029	0.581 ± 0.002	0.317 ± 0.006	0.903 ± 0.014	5.79			
四川	0.259 ± 0.009	0.373 ± 0.014	0.230 ± 0.008	1.869 ± 0.072	1.04			
贵州	0.234 ± 0.003	0.059 ± 0.001	0.060 ± 0.001	0.614 ± 0.002	0.94			
广东广州	0.02 ± 0.001	$0.009 \pm 0.000 7$	0.148 ± 0.004	0.581 ± 0.004	0.09			

3 讨论与结论

鱼腥草挥发性成分的含量与生长的气候条件 和地域关系密切相关,不同产地鱼腥草药材挥发性 成分的差别主要体现在物质的相对含量上,且差别 较大,且活性成分与采摘时间也有很大关系^[15]。选择品质优良,活性成分含量高的药材对于药物制剂品质和临床效果。《中国兽药典》2015年版二部收录了鱼腥草注射液质量标准,鱼腥草注射液应用鲜鱼腥草经水蒸气蒸馏获得的蒸馏液制备而成,其质

量标准中采用薄层色谱法确定样品中是否含有 4 - 萜品醇、甲基正壬酮、α - 松油醇,采用气相色谱法 考察 4 个活性成分的特征图谱,以甲基正壬酮为参照物,以峰面积比值不低于 0.15 定量。

仅应用薄层色谱法鉴别,气相色谱法考察特征 图谱,难以精确区分不同产地鱼腥草药材挥发性成 分的差异,因此本研究在鱼腥草注射液质量标准特 征图谱考察方法的基础上,建立了4-萜品醇、甲基 正壬酮、α-松油醇、乙酸龙脑酯4种活性成分含量 精密测定的气相色谱法,选择外标法定量,并参照 《兽药质量标准分析方法验证指导原则》相关要求 对所建方法进行了验证,结果表明,该方法4种活性 成分色谱峰之间,与其他杂质峰之间均能有效分 离,专属性良好;4种活性成分在0.1~1.5 mg/mL 的范围内,相关系数均大于0.999,线性关系优良; 方法重复性试验样品中 4 个成分平均 $RSD \leq 1.2\%$, 中间精密度试验样品中4个成分平均 RSD≤1.3%, 精密度好,回收率在80%~120%,准确度高;适用 于鲜鱼腥草蒸馏液中4种活性成分含量的测定。对 鲜鱼腥草活性成分精准定量,不仅能很好地表征药 材的差异性,还有助于准确找到引起这种差异的特 征物质,为中药质量控制提供了有用的基础信息。

本试验采用建立的方法对湖北、四川、贵州、广东广州地区鱼腥草挥发油中4种主要成分4-萜品醇、α-松油醇、乙酸龙脑酯、甲基正壬酮的含量进行测定,并进行了对比分析。《中国兽药典》2015年版二部规定鱼腥草注射液中4-萜品醇/参照物(0.25 μg/μL)峰面积比值应不得低于0.15。含量测定结果显示,湖北、四川、贵州3个产地鱼腥草挥发油中4种主要成分存在很大差异,其中以湖北地区鱼腥草挥发油中4种成分含量普遍较高,尤其是4-萜品醇含量;四川地区鱼腥草挥发油中则甲基正壬酮含量最为突出;贵州地区鱼腥草挥发油中,甲基正壬酮含量最为突出;贵州地区鱼腥草挥发油中,中4-萜品醇和甲基正壬酮含量较高,但α-松油醇、乙酸龙脑酯含量明显低于其他地区;广东广州地区鱼腥草挥发油中4-萜品醇含量不符合药典规

定,但甲基正壬酮含量较高,乙酸龙脑酯含量也高于贵州地区。总的来说,以湖北、四川地区鱼腥草质量较佳,4种主要成分含量相对较高。本研究结果为鱼腥草注射液药材选择、鱼腥草药材内在质量的综合评价和全面控制提供了一定的参考依据。

参考文献:

- [1]高学敏,钟赣生. 中药学[M]. 2版. 北京:人民卫生出版社.
- [2] 李秀清. 中药鱼腥草的现代药理研究[J]. 黑龙江医药,2014 (4):865-868.
- [3]陈 婧,方建国,吴方建,等. 鱼腥草抗炎药理作用机制的研究进展[J]. 中草药,2014,45(2);284-289.
- [4]张志荣,沈淼山,吴文辉. 鱼腥草总多酚提取工艺的优化及不同产地含量比较[J]. 中华中医药学刊,2016(10):2445-2448.
- [5]马 林,吴 丰,陈若芸. 三白草科植物化学及生物活性研究进展[J]. 中国中药杂志,2003,28(3);196-198.
- [6] 齐迎春, 胡 诚. 药食兼用鱼腥草[J]. 中国林副特产,1997(4): 43-43.
- [7]杜向群,陈敏燕,许 颖. 鱼腥草成分、药理的研究进展[J]. 江西中医药,2012,43(2):66-68.
- [8]吴 卫,郑有良,马 勇,等. 鱼腥草不同居群产量和质量分析 [J]. 中国中药杂志,2003,28(8):718-720.
- [9] Zimmermann N, Rothenberg M E. Receptor internalization is required for eotaxin - induced responses in human eosinophils [J]. The Journal of Allergy and Clinical Immunology, 2003, 111(1):97 -105.
- [10] Li W, Niu X, Zhou P, et al. A combined peritoneal macrophage/cell membrane chromatography and offline GC - MS method for screening anti - inflammatory components from Chinese traditionl medicine *Houttuynia cordata* Thunb. [J]. Chromatographia, 2011, 73(7/8):673-680.
- [11]杨 健,郭书台,杨学礼,等. 不同产地鱼腥草质量评价[J]. 现代中医药,2007(6):66-67.
- [12]马 敬. 鱼腥草挥发性物质的代谢累积格局[D]. 贵阳:贵州 师范大学,2016.
- [13] 陈 黎, 吴 卫, 郑有良. 鱼腥草游离氨基酸组成及含量的 HPLC 分析[J]. 氨基酸和生物资源,2004,26(1):20-24.
- [14]中国兽药典委员会.中国兽药典[M].北京:北京医药科技出版社,2015.
- [15]赵 铖,杨占南,罗世琼,等. 土壤养分对鱼腥草挥发性成分的影响[J]. 江苏农业科学,2018,46(9):195-198.