许标文,陈雪丽. 食品工业生产效率测算及区域差异——基于累加型 LHM 全要素生产率指标[J]. 江苏农业科学,2020,48(11):313-319. doi:10.15889/j.issn.1002-1302.2020.11.059

食品工业生产效率测算及区域差异——基于累加型 LHM 全要素生产率指标

许标文1,陈雪丽2

(1. 福建省农业科学院农业经济与科技信息研究所,福建福州 350003; 2. 中国社会科学院新闻与传播研究所,北京 100000)

摘要:运用累加型 LHM 全要素生产率指标(additive luenberger - hicks - moorsteen total factor productivity indicator) 测度 2001—2016 年我国 30 个省(市、区)食品工业全要素生产率(total factor productivity, TFP),并进一步分解为技术效率变化、规模效率变化和技术进步。结果表明,我国食品工业仍处于初级加工阶段,3 个子产业 TFP 稳步提升,但增长不一;技术进步是 TFP 增长的主要因素,技术效率及规模效率变化差异不大;从区域上看,宏观经济及农业资源禀赋的差异影响食品工业的发展,农副食品加工业 TFP 增长率呈东部、中部、西部地区依次降低的趋势,食品制造业 TFP 增长率表现为东部地区显著高于中部、西部地区,饮料制造业 TFP 增长率表现为东部地区显著高于中部、西部地区。因此,应加快食品工业科技创新推动技术进步、优化发展环境及立足资源禀赋协调区域发展,以实现我国食品工业高质量均衡协调发展。

关键词:食品工业;农副食品加工业;食品制造业;饮料制造业;累加型 LHM 全要素生产率;区域差异

中图分类号: F323.3 文献标志码: A 文章编号:1002-1302(2020)11-0313-07

食品工业作为保障民生的基础性产业,是农业 产业链和价值链的重要环节,将进入以营养健康为 主的高速发展阶段,在实施制造强国战略和推进健 康中国战略中具有重要地位。在近40年的发展过 程中,中国食品工业实现了由弱到强的快速发展并 取得了显著成效。但我国食品工业发展主要以粗 放式增长方式为主[1],特别是近年来人力、土地、环 境保护等成本不断提高,其发展面临结构不合理、 企业规模偏小、技术装备水平不高、资源综合利用 率低、创新能力不足等问题。目前,中国经济进入 新常态,正处在转变发展方式、优化经济结构、转换 增长动力的攻关期,提高食品工业全要素生产率 (total factir productivity, TFP)也成为食品工业高质 量发展的必然出路。食品工业为农产品加工业的 重要分支,现有农产品加工业全要素生产率主要采 用数据包络分析方法(data envelopment analysis, DEA)结合 Malmquist 指数进行分析[1-5],简单地把

业全要素生产率,一般认为农产品加工业全要素生 产率在稳步提高,各子行业全要素生产率增长不 一。但这些 Malmquist 指数都采用以自身为参照的 距离函数,忽略了其异质性,导致其结果无法比较。 O'Donnell 指出, Malmquist 指数并不具备乘法完备 性[6]; Peyrache 认为, Malmquist 指数只衡量生产边 界在特定点的位移,而忽略了规模经济效应[7]。同 时 Kerstens 等强调, Malmuqist 指数、Luenberger 指标 等仅能被称作技术生产率指标(technical productivity measures) [8]。 O'Donnell 等认为, LHM (luenberger - hicks - moorsteen) 全要素生产率指标 具备加性完备(additively complete)条件,可以更精 确地衡量投入和产出的变化,能够准确反映全要素 生产率的跨期变化率[6,8]。此外,多数文献把各个 评估单元的全要素生产率的平均值作为总体样本 的全要素生产率、Shen 等则提出累加型 LHM 全要 素生产率指标,把总体样本的全要素生产率增长分 解为单个被评估单元生产率增长之和,使得被评估 单元之间的生产率具备可比性[9]。因此,本研究运 用累加型 LHM 全要素生产率指标深入分析 2001— 2016年中国各地区食品工业的3个子产业全要素 生产率演变及区域差异,并创新采用整体性方向性

距离函数分析中国食品工业全要素生产率,使得各

细分行业全要素生产率的平均值作为农产品加工

收稿日期:2019-05-20

基金项目:福建省公益类科研院所基本科研专项(编号:2017R1016 - 8)。

作者简介:许标文(1982—),男,福建永定人,硕士,副研究员,主要从事农业经济研究。E-mail:13596447@~qq.~com。

通信作者:陈雪丽,博士,助理研究员,主要从事新闻传播与大数据运用研究。E-mail;chenxueli05@126.com。

省份食品工业 TFP 可以进行相互比较,对推进食品工业健康发展具有较强的政策指导意义。

1 研究方法及数据来源

1.1 研究方法

1.1.1 整体生产技术和距离函数的设定 衡量我国食品工业的全要素生产率演变及其区域差异,须要利用中国各省份的相关投入与产出数据构建生产可行性前沿面。一般情况下,生产集用来表示生产技术(T),假设有N个投入(x)用于生产M个产出(y),用所有被评估单元的投入与产出数据构建成生产集。根据 Shen 等的定义,生产集要满足生产集具有封闭性(closed set)、生产可能性前沿面为凸性(convexity)、可变规模回报(variable returns to scale, VRS)、投入和产出具有自由支配性(free disposability)等基本经济学假设 $[9^{-10}]$ 。本研究衡量的食品工业(T)包括3个子产业,即农副食品加工业(T_1)、食品制造业(T_2)和饮料制造业(T_3)。因此,本研究的生产技术T表示如下。

$$T = \{(x,y) \in \mathbf{R}^{N+M} : x$$
能生产 $(y) \};$

$$T = T_1 \cup T_2 \cup T_3$$
 (1)

生产技术设定后,用投入与产出数据构建生产集,其中投入少、产出多的"标杆"省份就构成了生产可行性前沿面。此时,须要引入距离函数(distance functions)来衡量各个省份与"标杆"省份之间的发展差距。距离函数经常用来衡量被评估单元和生产可行性前沿面上"标杆"(最佳表现者)的差距,主要包括乘积形式的 Shephard 距离函数和加減形式的方向性距离函数(directional distance function, DDF)。其中,方向性距离函数的值可表示为被评估单元与前沿面的差距[11],即被评估单元的无效率值。本研究使用的方向性距离函数 D 可以用公式(2)表示。

$$D(x,y;g_x,g_y) = \max\{\beta,\delta \in \mathbf{R}_+: (x-\beta g_x,y+\delta g_y) \in \mathbf{T}\}$$
。 (2)
式中:目标函数 β 、 δ 分别表示投入和产出的无效率值,可表示为投入的潜在减少空间和产出的潜在增长空间。

由于涉及食品工业的 3 个子产业,为便于比较产业内不同生产单元的全要素生产率,本研究创新采用整体性方向性距离函数 (aggregate directional distance function)。通过将距离函数的方向向量设为整个食品工业的投入或产出,即各省份食品工业

的子产业都基于同一参照方向。该设定的优势在 于各省份食品工业子产业的全要素生产率都可以 进行比较,且数值也可累加,生产率变化具有更明 确的经济学含义,能够为决策者提供相对合理的参 考信息和政策建议。该距离函数可表示为公式(3)

$$(g_x, g_y) = (\sum_{k=1}^K x_k, \sum_{k=1}^K y_k)_{\circ}$$
 (3)

1.1.2 累加型 LHM 生产率指标与分解 本研究基于 Shen 等提出的累加型 LHM 全要素生产率指标,创新采用整体性方向性距离函数测算中国食品工业的全要素生产率^[9]。根据 Boussemart 等的建议^[12],整体性方向性距离函数的 LHM 指标可以表示如下

 $LHM^{t} = \begin{bmatrix} D^{t}(x_{k}^{t}, y_{k}^{t}; 0, g_{y}^{t}) - D^{t}(x_{k}^{t}, y_{k}^{t+1}; 0, g_{y}^{t+1}) \end{bmatrix} - \begin{bmatrix} D^{t}(x_{k}^{t+1}, y_{k}^{t}; g_{x}^{t+1}, 0) - D^{t}(x_{k}^{t}, y_{k}^{t}; g_{x}^{t}, 0) \end{bmatrix};$ $LHM^{t+1} = \begin{bmatrix} D^{t+1}(x_{k}^{t+1}, y_{k}^{t}; 0, g_{y}^{t}) - D^{t+1}(x_{k}^{t+1}, y_{k}^{t+1}; 0, g_{y}^{t+1}) \end{bmatrix} - \begin{bmatrix} D^{t+1}(x_{k}^{t+1}, y_{k}^{t+1}; g_{x}^{t+1}, 0) - D^{t+1}(x_{k}^{t}, y_{k}^{t+1}; g_{x}^{t}, 0) \end{bmatrix}.$ (4)式中: LHM_t, LHM_{t+1}分别表示 t、(t+1)期的生产率 变化,两者的算数平均值即为 LHM 全要素生产率指标,可表示为公式(5)

$$TFP_{LHM}^{t,t+1} = \frac{1}{2} (LHM^t + LHM^{t+1})_{\circ}$$
 (5)

进一步将食品工业的全要素生产率分解为技术效率变化(TEC)、规模效率变化(SEC)和技术进步(TP),表示为公式(6)

 $TFP_{\text{LHM}}^{\prime,\iota+1} = TEC^{\prime,\iota+1} + SEC^{\prime,\iota+1} + TP^{\iota,\iota+1}$ 。(6)式中: $TEC^{\prime,\iota+1}$ 用于衡量资源合理利用水平,该值越大,对全要素生产率的贡献就越高; $SEC^{\prime,\iota+1}$ 表示被评估单元的生产规模距离最佳生产规模的远近,该值越大,表示规模的变化可以促进全要素生产率的增长; $TP^{\prime,\iota+1}$ 表示技术创新对生产前沿面的拉动,该值越大,则技术进步为经济增长提供的动力越大。参考 Diewert 等对 LHM 指标的分解 $^{[13-15]}$, LHM 全要素生产率指标的分解要素可表示为公式(7) $TEC^{\prime,\iota+1} = D^{\prime}(x_k^{\prime}, y_k^{\prime}; 0, g_y^{\prime}) - D^{\prime+1}(x_k^{\prime+1}, y_k^{\prime+1}; 0, g_y^{\prime+1});$

 $SEC^{t,t+1} = \frac{1}{2} \{ [D^{t}(x_{k}^{t+1}, y_{k}^{t+1}; 0, g_{y}^{t+1}) - D^{t}(x_{k}^{t}, y_{k}^{t+1}; 0, g_{y}^{t+1})] - [D^{t}(x_{k}^{t+1}, y_{k}^{y}; g_{x}^{t+1}, 0) - D^{t}(x_{k}^{t}, y_{k}^{t}; g_{x}^{t}, 0)] + [D^{t+1}(x_{k}^{t+1}, y_{k}^{t}; 0, g_{y}^{t}) - D^{t+1}(x_{k}^{t}, y_{k}^{t}; 0, g_{y}^{t})] - [D^{t+1}(x_{k}^{t+1}, y_{k}^{t+1}; g_{x}^{t+1}, 0) - D^{t+1}(x_{k}^{t}, y_{k}^{t+1}; g_{x}^{t}, 0)] \};$ $TP^{t,t+1} = \frac{1}{2} \{ [D^{t+1}(x_{k}^{t}, y_{k}^{t}; 0, g_{y}^{t}) - D^{t}(x_{k}^{t}, y_{k}^{t}; 0, g_{y}^{t})] + (x_{k}^{t}, y_{k}^{t}; 0, g_{y}^{t}) \};$

$$[D^{t+1}(x_k^{t+1}, y_k^{t+1}; 0, g_y^{t+1}) - D^t(x_k^{t+1}, y_k^{t+1}; 0, g_y^{t+1})]\}_{\circ}$$
(7)

1.1.3 非参数估计 距离函数的估计可使用参数 或非参数的测算方法,其中非参数法无须对生产函数形式进行前期设定,相对灵活简便,故予以采用。 累加型 LHM 全要素生产率指标的分解须计算 10 种不同跨期组合的方向性距离函数,以计算 $D'(x_k', y_k'^{i+1}; 0, g_y'^{i+1})$ 为例,基于数据包络分析的线性规划表示如下

$$D^{t}(x_{k}^{t}, y_{k}^{t+1}; 0, g_{y}^{t+1}) = \max \delta;$$

$$\sum_{k=1}^{K} \lambda_{k} y_{k}^{m,t+1} \ge y_{k}^{m,t+1} + \delta \sum_{k=1}^{K} y_{k}^{m,t+1} \quad m = 1, 2, \dots, M$$
s. t.
$$\begin{cases} \sum_{k=1}^{K} \lambda_{k} x_{k}^{n,t} \le x_{k}^{n,t} & n = 1, 2, \dots, M \\ \sum_{k=1}^{K} \lambda_{k} x_{k}^{n,t} \le x_{k}^{n,t} & n = 1, 2, \dots, N \end{cases}$$

$$\lambda_{k} \ge 0 \qquad k = 1, 2, \dots, K$$

$$(8)$$

1.2 指标选取及数据来源

本研究采用工业销售产值(亿元)作为衡量食

品工业产出的基本指标,并用工业生产者出厂价格 指数对产出值进行平减。

生产投入包括资本和劳动力投入,其中劳动力投入采用从业人员年平均数(万人);固定资产投入借鉴朱钟棣等的方法^[16],其公式如下:

$$K_{t} = K_{t_{0}} + \sum_{t_{0}+1}^{t} \frac{K_{t}}{P_{t}}$$
 (9)

式中: K_{t_0} 表示基期年的固定资产; K_t 表示 t年与 (t-1)年固定资产的变化量; P_t 表示 t年固定资产的投资价格指数。选择流动资产合计为流动资产投入指标,并采用"工业生产的生产者购进价格指数(农副产品类)"对流动资产进行平减。

本研究测算 2001—2016 年除西藏自治区外中国大陆 30 个省(市、区)食品工业全要素生产率,数据来源于 2002—2017 年《中国统计年鉴》《中国工业统计年鉴》等。按照国家统计局关于东部、中部、西部地区的划分标准,各区域及全国食品工业投入产出各变量的年均增长率见表 1。

立山米 刑	北 左	投入产出年均增长率(%)				
产业类型	指标	东部	中部	西部	全国	
农副食品加工业	固定资产	10.84	0.03	0.04	0.07	
	流动资产	17.03	0.03	0.05	0.08	
	从业人员	5.65	1.09	0.82	1.96	
	产值	18.14	0.01	0.01	0.02	
食品制造业	固定资产	12.04	15.74	17.09	13.94	
	流动资产	14.64	17.35	19.69	16.04	
	从业人员	1.72	7.64	8.11	3.66	
	产值	17.12	22.90	21.82	19.34	
	固定资产	8.59	8.56	9.68	6.67	
饮料制造业	流动资产	11.15	16.12	17.83	14.57	
	从业人员	7.61	5.53	7.42	7.79	
	产值	13.67	21.91	21.49	17.87	

表 1 2001—2016 年投入产出年均增长率变化情况

注:年均增长率为随机性趋势,通过最小二乘法(以下简称 OLS)计算获得。

2 实证结果与分析

2.1 我国食品工业全要素生产率总体分析

由表 2 可知,中国食品工业全要素生产率增长率稳步提升,年均增长 13.72%,这与我国对食品工业的政策和资金扶持是分不开的。其中,农副食品加工业全要素生产率增长最快,年均增长 9.27%; 其次是食品制造业,年均增长 2.55%;饮料制造业 增长率最低,年均增长1.90%。可见食品工业3个子产业全要素生产率增长不一,说明我国食品工业农产品精深加工不足,以初级加工为主的农副食品加工发展态势较好,而具有深度加工的食品制造业、饮料制造业则处于较弱的态势。

从 TFP 分解来看,食品工业 TFP 增长主要由技术进步拉动,这是因为企业资源配置不尽合理,企业规模还未达到最佳生产规模。农副食品加工业、

五		食品	食品工业			农副食品加工	小工城里			食品制造业	造业			饮料制造业	科	
#1#	TFP	TEC	SEC	TIP	TFP	TEC	SEC	TL	TFP	TEC	SEC	TIP	TFP	TEC	SEC	TL
2001	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2002	0.1403	0.0183	0.0799	0.0420	0.0803	0.0243	0.0246	0.0314	0.0340	-0.0002	0.0122	0.0220	0.0260	0.0052	-0.0058	0.0265
2003	0.2676	-0.0101	0.2413	0.0365	0.1754	0.000 3	0.0369	0.1382	0.0506	-0.0099	0.008 6	0.0520	0.0415	-0.0090	-0.0005	0.0511
2004	0.4707	-0.0167	0.4050	0.0824	0.3225	-0.0057	0.0773	0.2510	0.0840	-0.0232	0.0109	0.0962	0.0642	-0.0058	0.0121	0.0578
2005	0.8178	-0.0069	0.5590	0.2656	0.5249	-0.0047	0.1864	0.3432	0.1636	-0.0146	0.0525	0.1257	0.1292	0.0267	0.0124	0.0901
2006	0.9395	0.0130	0.7007	0.2258	0.5976	0.0116	0.1777	0.4083	0.1917	-0.0144	0.0352	0.1709	0.1502	0.0129	0.0159	0.1215
2007	1.1294	0.0226	0.8202	0.2866	0.7251	0.009 6	0.2246	0.4909	0.2268	-0.0059	0.0440	0.1887	0.1775	0.0179	0.0189	0.1407
2008	1.256 1	0.0625	0.8573	0.3364	0.8286	0.0385	0.2667	0.5234	0.2459	0.0021	0.0533	0.1905	0.1816	0.0164	0.0218	0.1433
2009	1.5360	0.0762	1.0764	0.3834	1.0050	0.0406	0.3063	0.658 1	0.3027	0.0057	0.0613	0.2357	0.2282	0.0158	0.0300	0.1825
2010	1.3443	0.0794	0.8808	0.384 1	0.9286	0.0430	0.3250	0.5606	0.2098	0.0078	0.0446	0.1574	0.2059	0.0144	0.0286	0.1629
2011	1.7204	0.0964	1.1959	0.428 1	1.1469	0.0565	0.3558	0.7346	0.3235	0.0058	0.0624	0.2553	0.2500	0.0098	0.0342	0.2060
2012	1.824 1	0.0718	1.2942	0.458 1	1.2356	0.0422	0.3887	0.8047	0.3375	0.0033	0.0684	0.2658	0.2510	0.0010	0.0263	0.2237
2013	1.8334	0.081 1	1.2719	0.4803	1.2397	0.0538	0.4063	0.7797	0.3414	-0.0024	0.0729	0.2709	0.2522	0.0012	0.0297	0.2213
2014	1.8266	0.0649	1.2624	0.4993	1.2267	0.0452	0.424 1	0.7574	0.3459	-0.0087	0.0754	0.2792	0.2540	-0.0002	0.0284	0.2258
2015	1.8898	0.055 5	1.3258	0.5085	1.2670	0.0404	0.4327	0.7939	0.3584	-0.0147	0.0765	0.2966	0.2645	-0.0008	0.0299	0.2354
2016	1.9505	0.0024	1.3749	0.5732	1.2849	0.0377	0.4524	0.7948	0.3778	-0.0303	0.0986	0.3096	0.2877	0.0223	-0.0050	0.2704
年均增长率(%)	13.72	0.50	9.39	3.83	9.27	0.36	3.23	5.68	2.55	-0.03	0.57	2.01	1.90	0.16	0.03	1.71
注:该指标为累计变化值,初始值2001年设为0。年均增长率为	计变化值.	初始值 200	1年设为0	。年均增长	-率为随机	字档数 涌·	隨机性趋势、涌讨 OLS 计算获得。	1. 李禄								

饮料制造业技术效率增长率较低,且食品制造业技术效率增长率为负,说明资源利用水平总体较低,甚至存在不合理的结构,需要企业在劳动力、固定资产、流动资产等要素投入进一步优化配置。农副食品加工业、食品制造业及饮料制造业的规模效率年均增长率为正,说明食品加工业呈规模报酬递增状态,但尚未达到最佳生产规模,规模水平的提高有助于促进全要素生产率的增长。食品工业3个子产业技术进步指标均较大,技术进步有助于投入改变要素的比例与产品创新,极大地拉动了食品工业生产技术前沿面;但与发达国家食品工业深度加工技术相比,我国食品工业加工技术仍处在初级阶段。

2.2 我国省际食品加工业 TFP 差异分析

不同区域因农业资源禀赋、经济发展态势等差 异,对食品加工业全要素生产率产生了一定的影 响,省际间食品工业全要素生产率增长差异明显。 由表 3 可知,我国农副食品加工业 TFP 增长率平均 为 0.31%, 东部、中部、西部地区全要素生产率增长 率分别为 4.44%、2.93%、1.90%。由于农副食品 加工业较多地依靠丰富的农业资源禀赋,东部地区 的山东、辽宁、江苏、广东、河北等省 TFP 增长率远 高于全国平均水平,而北京、天津、上海、海南等省 (市)TFP增长率低于全国平均水平;除了河北、辽 宁、浙江等少数省份外,各省份技术效率变化不大, 说明东部地区各投入要素流动性较强,资源利用结 构较合理:农副食品加工业规模报酬呈递增状态, 其中福建省、辽宁省等企业较其他省份而言有较合 理的生产规模;大部分省份技术进步指标是 TFP 增 长的主要推动力。由于中部地区农业资源禀赋较 丰裕,大部分省份 TFP 增长率均高于全国平均水 平,而江西省、山西省则分别因经济欠发达、农业资 源禀赋不足导致其农副食品加工业发展相对较慢; 各省份的技术效率变化指标较低,而规模效率变化 指标及技术进步指标相差不大,说明中部地区农副 食品加工业发展水平差异不大。西部地区除了广 西壮族自治区、四川省,其他省份因农业资源禀赋 较低,其TFP增长率均低于全国平均水平 0.31%; 大部分省份技术效率没有发生变化,这也使得不少 省份规模变化效率指标大于技术进步指标,说明西 部地区农副食品加工业在现有技术水平下实现了 较合理的生产规模,所以要适度加强西部地区农副 食品加工业的技术创新与改造。

由表 4 可知,各省份食品制造业的 TFP 增长率

表 3 2001—2016 年中国区域及省际农副食品加工业 TFP 及其分解指标变化情况

增长率(%) 省 区域 (市、区) TFP TEC SEC TP 东部 总和 4.44 0.071.06 3.30 北京 0.11 0.020.040.04 天津 0.12 0.010.03 0.08河北 0.36-0.030.14 0.25 辽宁 0.67 -0.010.19 0.49 0.07 0.02 0.05 上海 0.00 江苏 0.49 0.000.10 0.38 浙江 0.32 -0.010.11 0.22 福建 0.40 0.06 0.20 0.14 山东 1.39 0.00 0.11 1.28 广东 0.45 0.01 0.09 0.36 海南 0.07 0.02 0.04 0.01 1.48 中部 总和 2.93 0.18 1.27 0.01 0.06 0.06 山西 0.12 0.47 0.04 0.15 0.28 吉林 黑龙江 0.52 0.07 0.13 0.32 0.19 0.12 安徽 0.35 0.04 0.17 0.06 江西 0.01 0.10 河南 0.51 -0.060.27 0.30 湖北 0.43 0.03 0.17 0.22 湖南 0.35 0.04 0.19 0.12 西部 总和 1.90 0.11 0.90 0.90 内蒙古 0.29 0.030.10 0.16

表 4 2001—2016 年中国区域及省际食品制造业 TFP 及其分解指标变化情况

	人具分解指标受化情况 当长率(%)					
区域	省(京区)					
	(市、区)	TFP	TEC	SEC	TP	
东部	总和	1.38	-0.05	0.19	1.24	
	北京	0.12	0.01	0.04	0.07	
	天津	0.15	0.03	0.04	0.08	
	河北	0.09	-0.02	0.03	0.08	
	辽宁	0.11	0.00	0.04	0.07	
	上海	0.13	-0.03	0.04	0.12	
	江苏	0.16	-0.02	0.04	0.14	
	浙江	0.12	-0.03	0.05	0.10	
	福建	0.12	0.02	0.02	0.08	
	山东	0.22	0.00	-0.11	0.33	
	广东	0.16	0.00	-0.01	0.18	
	海南	0.00	0.00	0.00	0.00	
中部	总和	0.71	0.07	0.17	0.47	
	山西	0.04	0.00	0.02	0.01	
	吉林	0.05	0.00	0.03	0.02	
	黑龙江	0.10	0.00	0.03	0.07	
	安徽	0.15	0.05	0.02	0.08	
	江西	0.05	0.00	0.02	0.02	
	河南	0.13	0.01	-0.03	0.15	
	湖北	0.11	0.01	0.04	0.06	
	湖南	0.08	0.00	0.03	0.05	
西部	总和	0.46	-0.05	0.21	0.30	
	内蒙古	0.11	-0.04	0.04	0.11	
	广西	0.04	0.00	0.02	0.02	
	重庆	0.02	0.00	0.02	0.01	
	四川	0.10	-0.01	0.04	0.07	
	贵州	0.01	0.00	0.01	0.00	
	云南	0.02	-0.01	0.02	0.01	
	陕西	0.04	0.01	0.02	0.02	
	甘肃	0.02	0.00	0.01	0.00	
	青海	0.00	0.00	0.00	0.00	
	宁夏	0.02	0.00	0.01	0.01	
	新疆	0.07	-0.01	0.03	0.05	
全国		2.55	-0.03	0.57	2.01	

为0.09%,东部、中部、西部地区全要素生产率增长率分别为1.38%、0.71%、0.46%。东部地区由于食品制造业与宏观经济具有较高的相关性,除了海南省之外的省份 TFP 增长率均高于或等于全国平均水平;技术效率变化指标较小,其中浙江、河北、上海、江苏等省份食品制造业可能因投入要素配置结构的微小失衡阻碍了 TFP 增长;大部分食品制造业生产规模呈规模递增阶段,而山东省、广东省食

广西

重庆

四川

贵州

云南陕西

甘肃

青海

宁夏

新疆

全国

0.56

0.09

0.34

0.03

0.19

0.12

0.14

0.00

0.01

0.15

9.27

0.03

0.00

-0.01

0.01

0.01

0.01

0.01

0.00

0.00

0.01

0.36

0.15

0.07

0.22

0.02

0.11

0.09

0.06

0.00

0.01

0.07

3.23

0.38

0.01

0.13

0.07

0.02

0.07

0.00

0.00

0.07

5.68

-0.01

品制造业企业可能因规模过小导致其呈规模递减阶段。中部地区的安徽、河南、湖北、黑龙江等省TFP高于全国平均水平,其他省份则低于全国平均水平;各省份技术效率和规模效率的变化不大,但河南省食品制造业尚未达到规模经济水平,导致其规模效率指标为负增长。西部地区除了内蒙古自治区、四川省,其他省份TFP增长均低于全国平均水平;技术效率变化指标为0或为负值,不合理的要

素配置阻碍了 TFP 增长;说明西部地区以劳动力、原材料为主的要素投入导致技术效率难以提升,而先进加工设备及技术更新滞后使得技术难以改善,最终影响了 TFP 的增长。

由表 5 可知,各省份饮料制造业 TFP 增长率为 0.06%,东部、中部、西部地区全要素生产率增长分别为 0.82%、0.58%、0.51%。在东部、中部地区除了天津、上海、福建、海南、山西、江西等省份,其他省份 TFP 增长率均高于全国平均水平;技术效率变化不大,说明资源要素利用结构合理,但利用水平不高;除了山东、广东、河南等省饮料制造业企业尚未达到规模经济水平之外,其他省份企业规模报酬呈递增状态,但还须进一步提升企业规模;技术进步依旧是 TFP 增长的主要推动力。西部地区的陕西、甘肃、四川、贵州等省的 TFP 增长率高于或等于全国平均水平;除四川省规模效率指标为负数外,其他省份技术效率变化、规模效率指标及技术进步相差不大。

总体而言,宏观经济发展水平及农业资源禀赋的丰裕度影响着食品工业的发展。东部地区宏观经济快速发展带动了居民食品消费的增长,要素流动性也较强,先进技术的推广与使用也较广泛,相应食品工业的发展比其他地区都好。中部地区随着我国中部地区崛起以及国内市场一体化,其较丰富的农业资源禀赋优势也逐渐显现,其食品工业发展也较好。而西部地区则因相对落后的经济及较低的要素配置效率,其食品工业的发展还处于相对落后的地位。

3 结论与建议

本研究运用累加型 Luenberger - Hicks - Moorsteen 全要素生产率指标,创新采用整体性方向性距离函数测算并分解了 2001—2016 年我国 30 个省份的食品工业全要素生产率,比较各省份的食品工业全要素生产率。结果表明:第一,2001—2016 年我国食品工业全要素生产率增长总体水平较低,且食品工业发展处于农产品加工初级阶段。农副食品加工业、食品制造业及饮料制造业全要素生产率年均增长分别为 9. 27%、2. 55%、1. 90%。第二,对 LHM 全要素生产率指标进行分解,发现食品工业3 个子产业全要素生产率增长均主要依靠技术进步拉动,农副食品加工业、食品制造业的规模变化效率指标贡献度次之,而饮料制造业规模变化效率贡

表 5 2001—2016 年中国区域及省际饮料制造业 TFP 及其分解指标变化情况

		及兵分胜指标受化情况					
区域	省(末京)			率(%)			
	(市、区)	TFP	TEC	SEC	TP		
东部	总和	0.82	0.01	0.04	0.77		
	北京	0.09	0.01	0.03	0.05		
	天津	0.03	0.00	0.01	0.02		
	河北	0.11	0.03	0.02	0.07		
	辽宁	0.08	0.01	0.01	0.05		
	上海	0.02	-0.01	0.00	0.03		
	江苏	0.09	-0.01	0.00	0.10		
	浙江	0.11	-0.01	0.03	0.09		
	福建	0.05	0.00	0.01	0.04		
	山东	0.14	0.00	-0.05	0.19		
	广东	0.10	-0.01	-0.01	0.12		
	海南	0.00	0.00	0.00	0.00		
中部	总和	0.58	0.09	0.07	0.42		
	山西	0.05	0.00	0.02	0.03		
	吉林	0.07	0.01	0.01	0.05		
	黑龙江	0.07	0.00	0.02	0.05		
	安徽	0.10	0.03	0.02	0.05		
	江西	0.04	0.00	0.01	0.02		
	河南	0.08	0.02	-0.03	0.09		
	湖北	0.09	0.00	0.00	0.09		
	湖南	0.07	0.02	0.01	0.04		
西部	总和	0.51	0.06	-0.08	0.53		
	内蒙古	0.03	0.00	0.01	0.02		
	广西	0.04	-0.01	0.02	0.02		
	重庆	0.02	0.00	0.01	0.01		
	四川	0.09	0.01	-0.22	0.30		
	贵州	0.11	0.02	0.03	0.06		
	云南	0.04	-0.01	0.02	0.02		
	陕西	0.07	0.01	0.03	0.04		
	甘肃	0.06	0.02	0.01	0.03		
	青海	0.00	0.00	0.00	0.00		
	宁夏	0.01	0.00	0.00	0.00		
	新疆	0.04	0.02	0.01	0.02		
全国		1.90	0.16	0.03	1.71		

献度最低。因此,应加强食品工业科技创新,并完善食品工业空间布局,推进食品工业向最佳生产规模靠拢,从而实现农业资源、投入要素及产品市场的合理配置,最终实现生产率分解指标协调增长。第三,我国食品工业全要素生产率增长呈现东部、中部、西部地区依次降低的格局。东部地区的河北、辽宁、江苏、浙江、山东、广东等省,中部地区的黑龙江、安徽、河南、湖北等省及西部地区四川省的食品工业全要素生产率增长较高,这些省份不仅具

有良好的农业资源优势,与食品工业密切相关的加工制造技术也较发达,并出台了诸如"食品工业强省"战略等利于食品工业发展的政策措施,极大地推动了食品工业全要素生产率的增长。

因此,要提高我国食品加工业全要素生产率水 平,在重视技术进步的同时也要注重规模效率和技 术效率的变化。首先,加快创新驱动推进技术进 步。加快技术改进与引进,增加行业自主创新能 力,提高从业人员整体素质,协同发挥资本、技术和 知识等要素的作用,促进资源结构合理利用,从而 推动食品工业从农产品初级加工向食品深度加工 的转型。其次,优化发展环境提高规模经济。优化 中小食品加工企业的发展环境,促进中小食品加工 企业并购、兼并或联合,加快食品工业企业向最佳 生产规模推进,着力提升规模变化效应。最后,立 足资源禀赋协调区域发展。立足于我国农产品的 区域分布,引导食品加工企业向农产品主产区、优 势区和物流节点集聚,推动东部地区食品工业转型 升级,鼓励中西部地区充分利用当地优势资源推动 食品工业的发展,注重经济发达地区食品物流营销 网络建设,形成合理的产业空间分工格局。

参考文献:

- [1]刘 涛. 中国农产品加工业发展方式转变绩效评估——基于 2001—2010 年的面板数据分析[J]. 华中农业大学学报(社会科学版),2013(2):13-18.
- [2]赵 燃,骆 乐,韩 鹏. 中国农产品加工业技术效率、技术进步与生产率增长[J]. 中国农村经济,2008(4):24-32.
- [3]姚 升,王光宇. 出口贸易、FDI与中国农产品加工业全要素生产率——基于行业面板数据的实证分析[J]. 技术经济与管理研究,2014(10):17-21.
- [4] 杨兴龙,王 凯. 中国玉米加工业生产率增长、技术进步与效率变化——以4个玉米主产省为例[J]. 中国农村观察,2008(4):53-61,81.

- [5]李 鹏,曾 光. 我国农副食品加工业全要素生产率研究——基于17个细分行业数据[J]. 中国农业大学学报,2012,17(4): 179-184.
- [6] O'Donnell C J. An aggregate quantity framework for measuring and decomposing productivity change [J]. Journal of Productivity Analysis, 2012 (38):255 - 272.
- [7] Peyrache A. Hicks moorsteen versus malmquist; a connection by means of a radial productivity index [J]. Journal of Productivity Analysis, 2014, 41(3):435-442.
- [8] Kerstens K, Shen Z, Woestyne I V D. Comparing luenberger and luenberger - hicks - moorsteen productivity indicators; how well is total factor productivity approximated? [J]. International Journal of Production Economics, 2018, 195(1):311-318.
- [9] Shen Z, Valdmanis V. Identifying the contribution to hospital performance among Chinese regions by an aggregate directional distance function [J]. Health Care Management Science, 2020, 23 (1):142-152.
- [10] Hackman S T. Production economics; integrating the microeconomic and engineering perspectives [M]. Berlin; Springer Science & Business Media, 2007.
- [11] Chambers R G, Chung Y, Färe R. Benefit and distance functions [J]. Journal of Economic Theory, 1996, 70(2):407 419.
- [12] Boussemart J P, Leleu H, Shen Z. Environmental growth convergence among Chinese regions [J]. China Economic Review, 2015, 34(7): 1-18.
- [13] Diewert W E, Fox K J. Reference technology sets, free disposal hulls and productivity decompositions [J]. Economics Letters, 2014, 122 (2):238-242.
- [14] Diewert W E, Fox K J. Decomposing productivity indexes into explanatory factors[J]. European Journal of Operational Research, 2017,256(1):275-291.
- [15] Ang F, Kerstens P J. Decomposing the luenberger hicks moorsteen total factor productivity indicator; an application to US agriculture[J]. European Journal of Operational Research, 2017, 260(1):359-375.
- [16]朱钟棣,李小平. 中国工业行业资本形成、全要素生产率变动及 其趋异化:基于分行业面板数据的研究[J]. 世界经济,2005 (9):51-62.