包书军,熊 智,李雕益,等. 思茅松毛虫 2 龄幼虫肠道可培养细菌的多样性[J]. 江苏农业科学,2022,50(1):97-102. doi:10.15889/j. issn. 1002-1302.2022.01.018

思茅松毛虫2龄幼虫肠道可培养细菌的多样性

包书军1,熊智2,李雕益1,李选文1,熊忠平3,罗曼4

- (1. 西南林业大学生命科学学院, 云南昆明 650224; 2. 西南林业大学继续教育学院, 云南昆明 650224;
 - 3. 西南林业大学生物多样性学院,云南昆明 650224;4. 西南林业大学林学院,云南昆明 650224)

摘要:以云南安宁地区思茅松毛虫(Dendrolimu kikuchii)2 龄幼虫为研究对象,研究其肠道细菌多样性,以期为思茅松(Pinus kesiya var. langbianensis)等植物保护奠定基础,并为思茅松毛虫的生物防治提供数据。试验采用纯培养法对思茅松毛虫2 龄幼虫肠道细菌进行分离纯化,通过对菌株形态特征观察和生理生化测定进行初步鉴定,然后结合16S rDNA 分子鉴定技术判定细菌的分类学地位。结果显示,从2 龄幼虫肠道中分离得到115 株细菌,隶属于4 个属,8个类群,分别为 Enterobacter sp.、Staphylococcus sp.、Bacillus sp.、Corynebacterium sp.,其中23 株肠杆菌属分为2个类群,55 株葡萄球菌属分为3个类群,27 株芽孢杆菌属分为2个类群,10 株棒状杆菌属有1个类群。优势菌群葡萄球菌属(Staphylococcus sp.)相对分离率最高(48.00%),2 龄幼虫肠道细菌的 Shannon 多样性指数、Simpson 优势度指数、Margalef 丰富度指数分别为2.0526,0.8682、1.4753,说明思茅松毛虫2龄幼虫肠道细菌具有丰富的多样性。

关键词:思茅松毛虫;肠道细菌;16S rDNA;多样性

中图分类号:S433.4 文献标志码: A 文章编号:1002-1302(2022)01-0097-06

我国松毛虫可分为7个属82种,分别是松毛虫属(Dendrolimus)、云毛虫属、大毛虫属、小毛虫属、 丫毛虫属、杂毛虫属、栎毛虫属,而思茅松毛虫属于 松毛虫属(Dendrolimus)^[1],因最早在云南思茅地区 发现而被命名为思茅松毛虫^[2],主要分布在我国四 川、云南、广东、江西、台湾、安徽等省份^[3],一年发 生1~2代,以幼虫危害最大,是我国南方重要松树 害虫,主要危害松树有思茅松、云南松、海南松、云 南油杉、马尾松和短叶松等^[4],严重时可造成毁灭 性灾害^[5]。

思茅松毛虫的防治方法主要包括:生物防治、物理防治、化学防治等^[6]。生物防治是近年常用效果较好的方法,主要是利用微生物、激素等方法进行防治^[7];万鹰等利用白僵菌粉喷洒于有思茅松毛虫的树上,研究白僵菌对思茅松毛虫的防治效果,结果显示,白僵菌的防治效果相对于其他3种药剂要慢,但防治效果持久^[8]。物理防治是利用灯光诱

集成虫使其接触高压电而死亡,或利用人工摘茧除卵等的方法^[6]。化学防治是指利用化学药剂杀灭害虫的方法,通常使用的化学药剂有50%马拉硫磷乳剂、杀螟松乳剂等,每年的4—6月在大面积防治中使用浓度为20%杀灭菊酯较为适用^[9]。

微生物研究一直是人们研究的热点,其中,昆虫肠道微生物也是人们的研究焦点之一,且随着测序技术的不断提升和发展,对于微生物的识别更加迅速和准确^[10]。昆虫肠道微生物的数量和种类均非常多,且肠道微生物对机体的发育、生理、营养吸收等均有巨大影响^[11]。

1 材料与方法

1.1 试验材料

试验时间:2018年10月至2019年5月。试验地点:云南省安宁市草铺镇森林地区(24°31′~25°6′N,102°8′~102°37′E),平均海拔1968 m。

试验样本为思茅松毛虫 2 龄幼虫,根据安宁市森林的情况在采集地方圆 1 km² 范围内随机挑选 10 个样品点,每个样品点采集 10 头健康的 2 龄幼虫,总计 100 头,采集样本的同时将样本所在的树枝带回实验室,用于 2 龄幼虫饲养,为后续研究做准备。

1.2 分离培养基与试剂、仪器

分离培养基:牛肉膏蛋白胨培养基(NA):牛肉

收稿日期:2021-04-15

基金项目:国家自然科学基金(编号:3166010405);云南省重大科技专项(编号:202002AA10007)。

作者简介:包书军(1994—),男,甘肃漳县人,硕士研究生,主要从事 肠道微生物研究。E – mail:1070879926@ qq. com。

通信作者: 熊忠平, 高级实验师, 主要从事森林病虫害研究。 E-mail:76250630@qq.com。 膏 3 g,蛋白胨 10 g,氯化钠 5 g,琼脂 15 ~ 20 g,蒸馏 水定容至 1 000 mL,pH 值 7.0 ~ 7.2,121 ℃ 灭菌 20 min。

主要试剂:培养基及生理生化鉴定所用分析 纯、化学试剂(西陇化工股份有限公司),Ezup 柱式 细菌基因组 DNA 抽提试剂盒[天根生化科技(北京)有限公司],PCR 扩增体系试剂(硕擎生物科技有限公司)。

主要仪器:YXQ-LS立式压力蒸汽灭菌器(上 海博讯实业有限公司医疗设备厂)、AL204 电子天 平(Mettler - Toledo Group)、SW - CI 超净工作台(上 海博讯实业有限公司医疗设备厂)、HHB11 电热恒 温培养箱(上海跃进科技仪器厂)、Haier冷藏柜、 HH-2数显电子恒温水浴锅(金坛市丹瑞电器厂) DHG-9053A型、电热恒温鼓风干燥箱(上海一恒 科学仪器有限公司)、ZHWY - 200B 恒温培养振荡 器(上海智城分析仪器制造有限公司)、Galanz 微波 炉、Midea 电磁炉、70型离子交换纯水器(上海南华 医疗器械厂)、SZ-96 自动纯水器(上海亚荣生化仪 器厂)、FM130 制冰机(GRANT)、微量移液器(2.5、 10.0、50.0、200.0、1 000 μL)(芬兰 Finnpipette)、 HBA-1960 PCR 扩增仪(MJ RESEARCH)、DYY-8C 电泳仪及电泳槽(北京市六一仪器厂)、凝胶成 像分析仪(美国 Bio - Rad 公司, Gel - Doc XR +)。 1.3 肠道细菌的分离纯化

选取 100 头健康的 2 龄幼虫,试验前饥饿处理 40 h 即在恒温 22~24 ℃、恒湿 80%~85% 条件下, 无菌水喂养幼虫,40 h 后待其排空体内食物残渣后进行试验。将试验幼虫置于冰上 3~5 min,待其昏迷;采用 70% 乙醇擦拭幼虫体表 30 s,无菌水冲洗 2~3 遍,0.1% HgCl₂ 棉球擦拭幼虫体表 10 s,无菌水冲洗4~5次,在超净工作台中将体表消毒好的幼虫固定于无菌蜡盘上,使用灭菌后的细尖钳将幼虫腹部剖开,取出整个肠道,并立即用 0.9% 无菌 NaCl溶液冲洗表面 2次,然后将肠道取出放入无菌离心管中,并向离心管中加入 1 mL PBS 缓冲液研磨成匀浆,备用。

吸取上述肠道匀浆 1 mL 置于 9 mL PBS 缓冲液中,稀释成 10^{-1} ,按照 10 倍梯度稀释至 10^{-5} ,吸取每个浓度稀释液 100 μ L 分别涂布于 NA 培养基中,每个梯度涂 3 个平板,作为试验组。取最后一次清洗的无菌水 100 μ L 涂布于 NA 培养基上,作为试验空白对照组。将涂布均匀的培养平板倒置于 37 $^{\circ}$ C

培养箱内,培养 72 h 后观察空白对照是否有菌落形成,若无菌落长出,则选择单菌落数在 30~300 的培养皿,根据涂有肠道内容物悬液培养皿上单菌落的不同形态特征,挑选单菌落移至新的 NA 培养基平板上,采用分三区的划线法进行菌株纯化,直至菌株形态基本一致,得到纯菌株。将得到的菌种保藏于 NA 斜面培养基中,4 ℃保存备用。

1.4 2龄幼虫肠道可培养菌株的形态观察

将经分离纯化得到的纯菌株用平板划线法接种于新的 NA 平板上,在 37 ℃下培养 24~48 h,待菌落长成后,对菌落进行染色^[12]并参考《常见细菌系统鉴定手册》^[13]对菌落特征进行描述。

1.5 2龄幼虫肠道可培养菌株的生理生化鉴定

按照《现代微生物学实验技术》^[14]、《微生物学实验教程》^[15]等微生物生理生化鉴定的方法,对2龄幼虫肠道细菌进行生理生化鉴定。

1.6 2龄幼虫肠道细菌 16S rDNA 分子鉴定

1.6.1 肠道细菌基因组 DNA 提取及 PCR 扩增 在 NA 培养基上活化分离得到的纯菌株,然后接种 至液体培养基扩大培养、离心、收集菌体,利用 Ezup 柱式细菌基因组 DNA 抽提试剂盒提取 2 龄幼虫肠 道细菌基因组 DNA。用 1.0% 的琼脂糖凝胶检测提 取出的细菌基因组 DNA,得到的片段大小符合细菌 基因组 DNA 后,再将检测合格的 DNA 产物作为 16S rDNA 序列扩增模板。扩增引物选择:正向引物 27F(5' - AGAGTTTGATCCTGGCTCAG - 3')和反向 引物 1492R(5' - GGTTACCTTGTTACGACTT - 3')。 PCR 扩增体系为: 25. 0 μL 的 2 × Taq PCR MasterMix; 3.0 μL 的模板 DNA; 10.0 μmol/L 正向 引物 27F 和反向引物 1492R 各 1.0 µL; 双蒸水补充 至 50.0 µL。PCR 扩增程序为:94 ℃ 预变性 5 min; 94 ℃变性 1 min,56 ℃退火 1 min,72 ℃延伸 3 min, 30 个循环; 72 ℃终延伸 5 min, - 20 ℃保存。取 4.0 μL PCR 扩增后的产物用 1% 琼脂糖凝胶进行 电泳检测,将检测合格的 PCR 扩增产物送生工生物 工程(上海)股份有限公司测序。

1.6.2 2龄幼虫肠道细菌系统发育树构建 通过 DNA MAN6.0 软件进行矫正及拼接测得的序列,然后将拼接完成的 16S rDNA 序列在 http://www.ncbi.nlm.nih.gov/中与 GenBank 数据库中的序列进行 BLAST 同源性比对,选出与菌株相似度最高的序列,运用软件 MEGA 7.0 构建 Neighbor – Joining 系统发育树,判定其分类学关系。

1.7 分离率与群落结构多样性分析

- (1)分离率与相对分离率,分别衡量的是2龄幼虫肠道细菌丰富度和某种2龄幼虫肠道细菌的优势度。分离率指从样品中分离纯化得到的菌株数与全部样本虫数的比值;相对分离率指分离到的某种2龄幼虫肠道细菌株数占分离到的总菌株数的百分率。
 - (2)群落结构多样性分析

多样性指数[25]的计算公式如下:

- ①Shannon 指数: $H' = -\sum_{i=1}^{k} P_i \ln P_i$;
- ②Simpson 优势度指: $D_j = -\sum_{i=1}^k P_i^2$;
- ③Margalef 丰富度指数: $Ma = (S-1)/\ln N$;

上述 3 个公式中,S 表示某个 2 龄幼虫肠道细菌的种类数,N 表示某个 2 龄幼虫肠道细菌的总量,

P. 表示某种 2 龄幼虫肠道细菌的相对分离率。

2 结果与分析

2.1 2龄幼虫肠道细菌的分离结果

从 100 头 2 龄幼虫肠道中共分离得到 115 株细菌,分离率达 115.00%。根据菌落的形态特征共有8 个类群,整理编号得: N201~N208。

2.2 2龄幼虫肠道细菌形态特征

对分离得到的8株细菌的菌落特征与革兰氏染色结果进行观察,结果(表1)表明,8株菌株中多数菌株的革兰氏染色结果呈阳性,仅有1株呈阴性。且大部分菌株为杆状,仅有N207、N208为球状,N202为拟球状;大部分菌株边缘整齐且不透明,只有N206、N207半透明;多数菌株表面光滑湿润。

表 1 2 龄幼虫肠道细菌的菌落形态	特征
--------------------	----

菌株编号	菌体特征	形状	颜色	边缘	透明度	其他特征	数目 (株)	相对分离率(%)
N201	G - ,杆状	圆形微凸起	灰白色	整齐	不透明	表面光滑湿润	12	10.43
N202	G + ,拟球状	圆形微凸起	乳白色	整齐	不透明	较干燥无光泽	18	15.65
N203	G + ,杆状	圆形凸起	乳白色或微黄色	不整齐	不透明	表面褶皱无光泽	14	12.17
N204	G + ,杆状	圆形凸起	黄色	整齐	不透明	表面光滑湿润	10	8.70
N205	G + ,杆状	圆形平坦	微黄色	整齐	不透明	表面光滑湿润	13	11.30
N206	G + ,杆状	圆形凸起	白色	整齐	半透明	表面光滑湿润	11	9.57
N207	G + ,球状	圆形凸起	乳白色	整齐	半透明	表面光滑湿润	20	17.39
N208	G + ,球状	圆形凸起	白色或柠檬色	整齐	不透明	表面光滑	17	14.78

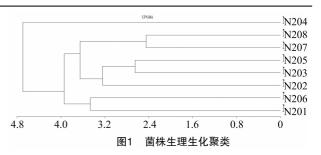
2.3 2龄幼虫肠道细菌生理生化鉴定及多样性 分析

经过对生理生化指标(表2)的聚类分析可知,在欧氏距离4.8 左右处,可将8个细菌类群划分为2个遗传聚类组,N204自成一类,其他7个细菌类群为一类,其中,N201、N206属于一类,N202、N203、N205、N207、N208属于另一类(图1)。

结合生理生化指标、细菌的形态特征、菌落及显微形态特征,查询细菌鉴定手册后,将分离到的8种细菌形态,初步鉴定为,N201、N206均属于肠杆菌属 Enterobacter sp.,N202、N207、N208为葡萄球菌属 Staphylococcus sp.,N203、N203为芽孢杆菌属 Bacillus sp.,N204为棒状杆菌属 Corynebacterium sp.,部分菌株因为菌种形态过于相似,需进一步进行后续分子生物学鉴定。

由表 1 可知,115 株 2 龄幼虫肠道细菌中,葡萄球菌属 Staphylococcus sp. (N202、N207 和 N208)相

对分离率为 48.00%,是思茅松毛虫 2 龄幼虫肠道细菌的优势菌群。另外,思茅松毛虫 2 龄幼虫肠道细菌的 Shannon 多样性指数、Simpson 优势度指数、Margalef 丰富度指数分别为 2.052 6、0.868 2、1.475 3,说明思茅松毛虫 2 龄幼虫肠道细菌具有丰富的多样性。


2.4 2龄幼虫肠道可培养细菌 16S rDNA 分析结果

将所获 8 种细菌形态 2 龄幼虫肠道细菌 16S rDNA 序列在 GenBank 中注册,获得 GenBank 登录号。由表 3 可知,分离到的 2 龄幼虫肠道细菌与相应菌株的 16S rDNA 序列相似度在 97% ~ 99%。115 株细菌隶属于 4 个属、8 个类群,初步鉴定为,N201 为阿氏肠杆菌 Enterobacter asburiae,N202 为木糖葡萄球菌 Staphylococcus xylosus,N203 为枯草芽孢杆菌 Bacillus subtilis,N204 为嗜甘氨酸棒状杆菌 Corynebacterium glyciniphilum,N205 为阿氏芽孢杆菌 Bacillus aryabhattai,N206 为肠杆菌属 Enterobacter

表 2 2 龄幼虫肠道可培养细菌的生理生化特征

表 2	2 龄幼虫肠	道可:	培养组	菌的:	生理生	化特征	证	
菌株编号	N201	N202	N203	N204	N205	N206	N207	N208
淀粉水解	_	+	+	-	+	_	_	_
蛋白水解	-	+	+	_	+	-	+	+
油脂利用	+	+	+	+	+	+	-	+
纤维素分解	-	-	-	_	-	-	_	_
耐盐性5%	-	-	-	_	-	-	_	_
明胶水解	-	+	+	_	+	+	_	-
M - R	+	-	-	+	-	-	_	+
V – P	-	+	_	+	_	_	+	-
氧化酶	-	_	+	_	+	_	_	-
过氧化氢酶	+	+	+	+	+	+	+	+
石蕊牛奶	+	+	_	_	+	+	+	_
柠檬酸盐	+	+	+	+	-	+	_	+
产酸葡萄糖	+	+	+	+	+	+	+	+
乳糖	_	_	_	_	_	_	_	+
蔗糖	+	+	+	+	+	+	+	+
甘露醇	+	_	_	+	+	_	_	_
甘露糖	+	+	+	_	+	+	+	+
鼠李糖	_	_	_	+	_	+	_	_
麦芽糖	+	_	_	+	_	+	_	_
肌醇	+	_	_	_	_	_	_	_
纤维二糖	_	+	_	+	_	_	_	_
果糖	+	_	+	+	+	+	+	+
木糖	+	_	_	+	+	_	+	+
山梨醇	+	_	_	+	_	+	+	+
半乳糖	+	_	_	+	_	+	_	_
产气葡萄糖	_	_	_	+	_	_	_	_
乳糖	_	_	_	_	_	_	_	_
蔗糖	_	_	_	+	_	_	_	_
甘露醇	+	_	_	+	_	_	_	_
甘露糖	+	_	+	_	+	_	_	_
鼠李糖	_	_	_	+	_	_	_	_
麦芽糖	+	_	_	+	_	_	_	_
肌醇	_	_	_	_	_	_	_	_
纤维二糖	_	_	_	+	_	_	_	_
果糖	+	+	+	+	+	_	_	_
木糖	_	_	_	+	_	_	_	_
山梨醇	+	_	_	+	_	+	_	_
半乳糖	+	_	_	+	_	_	_	_
硝酸盐还原	+	_	+	+	+	+	+	
亚硝酸盐		_	+		+			_
苯丙氨酸			_		_		_	_
本内氨酸 脲酶	_	_	+	+	_	_	+	+
w 呼 解 解 解 時	+	+	+	T	+	_	+	+
卵 解脂酶 吲哚	+	_		_	т	_	т	т
	_	_	+	_	_	_	_	_
pH 值 3	-	_	_	_	-	-	_	_
pH 值 12 3 – 酮基乳粯	-	_	_	_	-	-	_	_
3 - 剛基孔棉 H ₂ S	-	_	-	_	_	_	_	_
1123			+					

注:"+"表示阳性,"-"表示阴性。

sp,N207 为科氏葡萄球菌 Staphylococcus cohnii,N208 为表皮葡萄球菌 Staphylococcus epidermidis,这些思 茅松毛虫 2 龄幼虫肠道细菌均不能确定其真正的种 属地位,需要做进一步研究以鉴定其分类学地位。

2.5 系统发育树

将2龄幼虫肠道细菌的16SrDNA序列进行系统发育进化分析,构建系统发育树。由图2可知,思茅松毛虫2龄幼虫肠道可培养细菌归属于3个大类,第一大类为厚壁菌门,分别为:芽孢杆菌属Bacillus sp.、葡萄球菌属Staphylococcus sp.;第二大类为变形菌门,为肠杆菌属Enterobacter sp.;第三大类为放线菌门,为棒状杆菌属Corynebacterium sp.。

3 结论与讨论

思茅松毛虫对思茅松等松科植物有严重危害,由于对松科植物的危害而对林业造成巨大的损失,对生态环境和人类生产生活造成巨大影响。本研究以思茅松毛虫2龄幼虫为研究材料,通过对2龄幼虫肠道中的可培养细菌进行菌落观察、生理生化实验和16SrDNA同源性分析,共分离得到115株肠道可培养细菌,初步推测隶属于4个属、8个类群。通过对肠道细菌的相对分离率进行分析,葡萄球菌属的相对分离率最高,为48.00%,是2龄幼虫肠道细菌的优势菌属。通过对其多样性做一步分析,得到肠道可培养细菌具有丰富的多样性。

不同地域的思茅松毛虫肠道细菌种类存在一定差异。本次试验样品 2 龄思茅松毛虫幼虫采集地为云南安宁地区,结果显示 2 龄思茅松毛虫肠道可培养细菌有 115 株,属于 Enterobacter sp.、Staphylococcus sp.、Bacillus sp.、Corynebacterium sp.;张武先等利用传统培养法从采自云南思茅地区的思茅松毛虫 2 龄幼虫肠道内分离出了 5 株好氧细菌属于 Enterobacter sp. [16]。

同一区域不同龄期思茅松毛虫肠道微生物种 类不尽相同。李选文等从云南安宁采集的思茅松 毛虫6龄幼虫,从肠道内分离出104株菌,隶属于芽

表3	2 龄幼虫肠道细菌	GenBank 登录号及最大相似菌株	
----	-----------	--------------------	--

菌株编号	GenBank 登录号	最大相似菌株	相似度 (%)
N201	MK629786.1	Enterobacter asburiae (KC568144.1)	97
N202	MK629787.1	Staphylococcus xylosus (KT339332.1)	97
N203	MK629788.1	Bacillus subtilis (KT588643.1)	97
N204	MK629789.1	Corynebacterium glyciniphilum (MG198681.1)	99
N205	MK629790.1	Bacillus aryabhattai (KX230137.1)	99
N206	MK629791.1	Enterobacter sp (EU196755.1)	99
N207	MK629792.1	Staphylococcus cohnii (KT261250.1)	96
N208	MK629793.1	Staphylococcus epidermidis (EU834244.1)	96

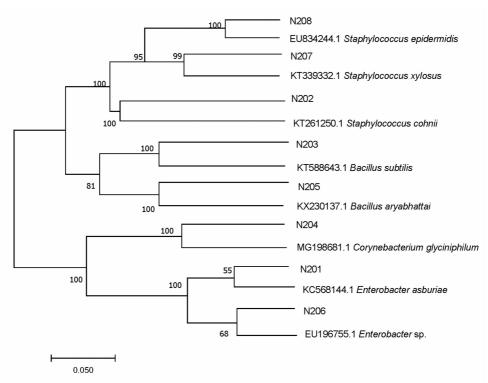


图2 基于 16S rDNA 序列构建 2 龄幼虫肠道细菌的系统发育树(邻接法)

孢杆菌属、类芽孢杆菌属、苍白杆菌属、短芽孢杆菌属、微球菌属、莫拉菌属、栖水菌属、土壤芽孢杆菌属、葡萄球菌属、普罗威登斯菌属^[17]。康柳等从云南昆明采集健康的松毛虫,实验室人工饲养至3龄然后在其肠道内分离出11株细菌,分别属于Bacillus sp.、Staphylococcus sp.、Pseudomonas sp.、Klebssiella sp.、Escherichia sp. ^[18]。孙佑赫等从采自普洱地区的4龄幼虫肠道内分离出11株细菌,分别属于 Klebsiella sp.、Bacillus sp.、Brevibscillus sp.、Lysinibacillus sp.、Raoultella sp.、Proteobacterium sp. ^[19]。王金华等从采自普洱的5龄幼虫肠道内分离出10株细菌,分别属于 Yokenlla sp.、Klebsiella

sp. 、Bacillus sp. 、Citrobacter sp. ^[20]。 孙佑赫等从采自普洱市的 6 龄幼虫肠道内分离出 6 株细菌,分别属于 Bacillus sp. ,Klebsiella sp. ^[21]。 马艳芳等从采自普洱市的 7 龄幼虫肠道内分离出 14 株细菌,分别属于 Leclercia sp. 、Corynebacterium sp. 、Yokenella sp. 、Enterobacter sp. ^[22]。

昆虫通常通过环境和食物获取各类微生物^[23],所以不同的生长环境及食物使幼虫摄入体内的细菌不同,从而影响幼虫肠道细菌的种类。研究发现极端碱性条件不利于绝大多数细菌的生长^[24],也有些细菌能在极端碱性条件下生活,如肠球菌能在 pH 值却高达 11~12 的鳞翅目幼虫中肠里生活^[25],说

明肠球菌可能以某种方式缓冲肠道极端 pH 值。本研究通过对 2 龄幼虫的肠道细菌分离得到了包含球菌在内的 8 个类群细菌,这为防治思茅松毛虫提供了依据。

随着分子生物学技术的发展,可以通过宏基因学技术直接提取肠道细菌的总 DNA,进而分析出整个肠道的细菌种类,使得对昆虫的肠道微生物的研究更加方便。本次试验通过纯培养技术分离得到的2龄幼虫肠道细菌只是肠道细菌中很少的一部分,需要结合宏基因组技术,才能得到较为全面的细菌类群。

思茅松毛虫是林业重要的害虫,尤其是对松科植物危害十分严重,对其肠道微生物进行研究,不仅可以补充昆虫肠道微生物资源库,还可以据此进一步分析肠道细菌对昆虫生长发育的影响,最终得到防治思茅松毛虫的生物制剂,从而减少林业害虫的危害。

参考文献:

- [1]侯陶谦 中国松毛虫防治研究进展[J]. 中国森林病虫,1993 (2):40-42.
- [2]侯陶谦. 中国松毛虫[M]. 北京:科学出版社,1987:32-34.
- [3] 陈明树, 孙松柏, 汤显春. 思茅松毛虫核型多角体病毒的初步研究[J]. 中国森林病虫,1985(4):5-6.
- [4]北京林学院昆虫教研组. 思茅松毛虫的研究[J]. 北京林业学院 学报,1981(1):25-35.
- [5]卢 斌,卜良高,舒卫奇. 思茅松毛虫的发生与防治[J]. 安徽林 业科技,2003(1):29.
- [6]卢 斌. 思茅松毛虫生物学特性及防治方法[J]. 安徽农学通报,2008(3):98.
- [7]程克华. 思茅松毛虫的发生及综合防治[J]. 现代农业科技, 2018(9):159.
- [8]万 鹰,刘德波,徐晓丽,等. 四种杀虫剂林间防治思茅松毛虫试验[J]. 中国森林病虫,2018,37(2):46-48.
- [9]张荣超. 思茅松毛虫的生物学特性及防治技术[J]. 现代园艺,

2015(6):63.

- [10] 周 帆, 庞志倡, 余小强, 等. 昆虫肠道微生物的研究进展和应用前景[J]. 应用昆虫学报, 2020(3):600-607.
- [11] 张振宇,圣 平,黄胜威,等. 昆虫肠道微生物的多样性、功能及应用[J]. 生物资源,2017,39(4);231-239.
- [12] 黄秀梨,辛明秀. 微生物学实验指导[M]. 2版. 北京: 高等教育出版社,2008;48-50.
- [13] 东秀珠,蔡妙英. 常用细菌鉴定手册[M]. 北京:科学出版社, 2001;364-397.
- [14]朱旭芬. 现代微生物学实验技术[M]. 浙江:浙江大学出版社, 2011:269-275.
- [15] 周德庆,徐德强. 微生物学实验教程[M]. 北京:高等教育出版 社,2013:350-352.
- [16] 张武先,王金华,熊 智,等. 思茅松毛虫2龄幼虫肠道好氧细菌的筛选及毒力测定[J]. 安徽农业科学,2011,39(28):17288-17290.
- [17]李选文,熊 智,黄雨云,等. 安宁思茅松毛虫6龄幼虫肠道可培养细菌的多样性研究[J]. 西部林业科学,2021,50(2):40-47,77.
- [18] 康 柳,王金华,孙佑赫,等. 3 龄思茅松毛虫幼虫肠道好氧细菌的分离及 ARDRA 多态性分析[J]. 湖北农业科学,2012,51 (7):1481-1483.
- [19] 孙佑赫,熊 智,王金华,等. 思茅松毛虫四龄幼虫肠道好氧细菌的 ARDRA 分析及鉴定[J]. 应用昆虫学报,2012,49(6): 1618-1622.
- [20]王金华,李 彪,张武先,等. 五龄恩茅松毛虫幼虫的肠道好氧 细菌多样性分析[J]. 应用昆虫学报,2013,50(1):230-234.
- [21] 佑 赫,熊 智,王金华,等. 思茅松毛虫 6 龄幼虫肠道细菌的 ARDRA 分析与鉴定[J]. 湖北农业科学,2012,51(8):1684-1686.
- [22]马艳芳,陈升富,王金华,等. 思茅松毛虫7龄幼虫肠道好氧细菌的筛选及毒力测定[J]. 中国森林病虫,2012,31(1):1-4.
- [23]迎 新,刘彦群,李 群,等. 昆虫肠道微生物多样性研究进展 [J]. 河南农业科学,2016,45(11):1-7.
- [24] Engel P, Moran N A. The gut microbiota of insects diversity in structure and function [J]. FEMS Microbiology Reviews, 2013, 37 (5):699 735.
- [25] 蓝波妙. 斜纹夜蛾肠道细菌多样性及其功能研究[D]. 福州: 福建农林大学,2016:1-4.