[1]de Luque A P,Rubiales D. Nanotechnology for parasitic plant control[J]. Pest Management Science,2009,65(5):540-545.
[2]Roduner E. Size matters:why nanomaterials are different[J]. Chemical Society Reviews,2006,35(7):583-592.
[3]Sharma R,Dewanjee S,Kole C. Utilization of nanoparticles for plant protection[M]//Plant nanotechnology. Switzerland:Springer International Publishing,2016:305-327.
[4]Ghormade V,Deshpande M V,Paknikar K M. Perspectives for nano-biotechnology enabled protection and nutrition of plants[J]. Biotechnology Advances,2011,29(6):792-803.
[5]Kah M,Hofmann T. Nanopesticide research:current trends and future priorities[J]. Environment International,2014,63:224-235.
[6]Nuruzzaman M,Rahman M M,Liu Y,et al. Nanoencapsulation,nano-guard for pesticides:a new window for safe application[J]. Journal of Agricultural and Food Chemistry,2016,64(7):1447-1483.
[7]Panpatte D G,Jhala Y K,Shelat H N,et al. Nanoparticles:the next generation technology for sustainable agriculture[M]//Microbial inoculants in sustainable agricultural productivity. New Delhi:Springer India,2016:289-300.
[8]Kaushik P,Shakil N A,Kumar J,et al. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies[J]. Journal of Environmental Science and Health:Part B Pesticides,Food Contaminants,and Agricultural Wastes,2013,48(8):677-685.
[9]Roy A,Singh S K,Bajpai J,et al. Controlled pesticide release from biodegradable polymers[J]. Central European Journal of Chemistry,2014,12(4):453-469.
[10]Campos E V R,de Oliveira J L,Fraceto L F,et al. Polysaccharides as safer release systems for agrochemicals[J]. Agronomy for Sustainable Development,2015,35(1):47-66.
[11]Liu J,Liu F,Gao K,et al. Recent developments in the chemical synthesis of inorganic porous capsules[J]. Journal of Materials Chemistry,2009,19(34):6073-6084.
[12]Chen J,Sun L,Cheng Y,et al. Graphene oxide-silver nanocomposite:novel agricultural antifungal agent against Fusarium graminearum for crop disease prevention[J]. ACS Applied Materials & Interfaces,2016,8(36),24057-24070.
[13]Paret M L,Vallad G E,Averett D R,et al. Photocatalysis:effect of light-activated nanoscale formulations of TiO2 on Xanthomonas perforans and control of bacterial spot of tomato[J]. Phytopathology,2013,103(3):228-236.
[14]Giannousi K,Avramidis I,Dendrinou-Samara C. Synthesis,characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans[J]. RSC Advances,2013,3(44):21743-21752.
[15]Gosse S,Labrie D,Chylek P. Role of root hairs and lateral roots in silicon uptake by rice[J]. Plant Physiology,2001,127(4):1773-1780.
[16]Park H J,Kim S H,Kim H J,et al. A new composition of nanosized silica-silver for control of various plant diseases[J]. The Plant Pathology Journal,2006,22(3):295-302.
[17]Elgorban A M,El-Samawaty A E R M,Yassin M A,et al. Antifungal silver nanoparticles:synthesis,characterization and biological evaluation[J]. Biotechnology & Biotechnological Equipment,2016,30(1):56-62.
[18]Lamsal K,Kim S W,Jung J H,et al. Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field[J]. Mycobiology,2011,39(3):194-199.
[19]Jo Y K,Kim B H,Jung G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi[J]. Plant Disease,2009,93(10):1037-1043.
[20]Ocsoy I,Paret M L,Ocsoy M A,et al. Nanotechnology in plant disease management:DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans[J]. ACS Nano,2013,7(10):8972-8980.
[21]Cui H,Zhang P,Gu W,et al. Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation[C]// 2009 NSTI Nanotechnology Conference and Expo. Florida:CRC Press,2009:286-289.
[22]Maness P C,Smolinski S,Blake D M,et al. Bactericidal activity of photocatalytic TiO2 reaction:toward an understanding of its killing mechanism[J]. Applied and Environmental Microbiology,1999,65(9):4094-4098.
[23]He L L,Liu Y,Mustapha A,et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum[J]. Microbiological Research,2011,166(3):207-215.
[24]Wani A H,Shah M A. A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi[J]. Journal of Applied Pharmaceutical Science,2012,2(3):40-44.
[25]Raghupathi K R,Koodali R T,Manna A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir,2011,27(7):4020-4028.
[26]Chen J,Peng H,Wang X,et al. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation[J]. Nanoscale,2014,6(3):1879-1889.
[27]Díaz-Blancas V,Medina D I,Padilla-Ortega E,et al. Nanoemulsion formulations of fungicide tebuconazole for agricultural applications[J]. Molecules,2016,21(10):1271-1282.
[28]Kah M,Beulke S,Tiede K,et al. Nanopesticides:state of knowledge,environmental fate,and exposure modeling[J]. Critical Reviews in Environmental Science and Technology,2013,43(16):1823-1867.
[29]Ruiz-Garcia A B,Olmos A,Arahal D R,et al. Biochip electronico para la deteccion y caracterizacion simultanea de los principales virusy bacterias patogenos de la patata[C]//Ⅻ Congreso dela Sociedad Espanola de Fitopatologia. 2004:12.
[30]Singh S,Singh M,Agrawal V V,et al. An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immuno-dipstick test[J]. Thin Solid Films,2010,519(3):1156-1159.
[31]Yao K S,Li S J,Tzeng K C,et al. Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens[J]. Advanced Materials Research,2009,79/80/81/82:513-516.
[32]Wang Z,Wei F,Liu S Y,et al. Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum[J]. Talanta,2010,80(3):1277-1281.
[33]Fang Y,Umasankar Y,Ramasamy R P. Electrochemical detection of P-ethylguaiacol,a fungi infected fruit volatile using metal oxide nanoparticles[J]. Analyst,2014,139(15):3804-3810.
[34]Dordas C. Role of nutrients in controlling plant diseases in sustainable Agriculture:a review[M]//Sustainable agriculture. Dordrecht:Springer Netherlands,2009:443-460.
[35]Ditta A,Arshad M. Applications and perspectives of using nanomaterials for sustainable plant nutrition[J]. Nanotechnology Reviews,2015,5(2):209-229.
[36]Liu R,Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions[J]. Science of the Total Environment,2015,514:131-139.
[37]Ombódi A,Saigusa M. Broadcast application versus band application of polyolefin-coated fertilizer on green peppers grown on andisol[J]. Journal of Plant Nutrition,2000,23(10):1485-1493.
[38]Solanki P,Bhargava A,Chhipa H,et al. Nano-fertilizers and their smart delivery system[M]//Nanotechnologies in food and agriculture. Berlin:Springer International Publishing,2015:81-101.
[39]Lexandratos N,Bruinsma J. World agriculture towards 2030/2050:the 2012 revision[R]. Rome:FAO,ESA Working Paper,2012.
[40]Servin A,Elmer W,Mukherjee A,et al. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield[J]. Journal of Nanoparticle Research,2015,17(2):1-21.
[41]Rashid A,Ryan J. Micronutrient constraints to crop production in the near east[J]. Advances in Agronomy,2013,122(4):1-84.
[42]Monreal C M,de Rosa M,Mallubhotla S C,et al. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients[J]. Biology and Fertility of Soils,2016,52(3):423-437.
[43]罗伟君,唐琳,周佳丽,等. 纳米锌肥对番茄果实锌含量与品质的强化[J]. 江苏农业学报,2016,32(1):184-188.
[44]Yang F,Liu C,Gao F,et al. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction[J]. Biological Trace Element Research,2007,119(1):77-88.
[45]Jaberzadeh A,Moaveni P,Moghadam H R T,et al.Influence of bulk and nanoparticles titanium foliar application on some agronomic traits,seed gluten and starch contents of wheat subjected to water deficit stress[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca,2013,41(1):201-207.
[46]Suriyaprabha R,Karunakaran G,Yuvakkumar R,et al. Silica nanoparticles for increased silica availability in maize(Zea mays L.) seeds under hydroponic conditions[J]. Current Nanoscience,2012,8(6):902-908.
[47]Lahiani M H,Dervishi E,Chen J,et al. Impact of carbon nanotube exposure to seeds of valuable crops[J]. ACS Applied Materials & Interfaces,2013,5(16):7965-7973.
[48]Tiwari D K,Dasgupta-Schubert N,Cendejas L M V,et al. Interfacing carbon nanotubes (CNT) with plants:enhancement of growth,water and ionic nutrient uptake in maize(Zea mays) and implications for nanoagriculture[J]. Applied Nanoscience,2014,4(5):577-591.
[49]孔倩倩,李志辉,王琼,等. 纳米基因载体在植物遗传转化中的应用[J]. 生物技术通报,2010(6):6-12.
[50]夏兵,董琛,陆叶,等. 纳米材料在植物细胞生物学研究中的应用[J]. 南京林业大学学报(自然科学版),2011,35(6):121-126.
[51]Jafarirad S,Naderi R,Alizadeh H,et al. Silver-nanoparticle as a vector in gene delivery by incubation[J]. International Research Journal of Applied Life Sciences,2013,2(3):21-33.
[52]Torney F,Trewyn B G,Lin V S Y,et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology,2007,2(5):295-300.
[53]Chang F P,Kuang L Y,Huang C A,et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. Journal of Materials Chemistry B,2013,1(39):5279-5287.
[54]Dasgupta N,Ranjan S,Mundekkad D,et al. Nanotechnology in agro-food:from field to plate[J]. Food Research International,2015,69:381-400.
[55]Pandey S,Giri K,Kumar R,et al. Nanopesticides:opportunities in crop protection and associated environmental risks[J]. Proceedings of the National Academy of Sciences India,2016,86:1-22.
[1]韦荣昌,唐其,白隆华.田七炭疽病病原的分离与鉴定[J].江苏农业科学,2017,45(10):86.
Wei Rongchang,et al.Isolation and identification of pathogens causing Panax notoginseng anthracnose[J].Jiangsu Agricultural Sciences,2017,45(11):86.
[2]娄喜艳,向文华,刘冬梅,等.河南省商丘地区棉花枯萎病菌的分子鉴定与致病力[J].江苏农业科学,2017,45(16):86.
Lou Xiyan,et al.Molecular identification and pathogenicity of Fusarium oxysporum f. Sp. in Shangqiu area of Henan Province[J].Jiangsu Agricultural Sciences,2017,45(11):86.
[3]曲薇,伍淼,王旭东,等.哈茨木霉菌株WY-1对番茄的促生防病效果[J].江苏农业科学,2018,46(05):94.
Qu Wei,et al.Effects of Trichoderma harzianum strain WY-1 on growth and disease control of tomato[J].Jiangsu Agricultural Sciences,2018,46(11):94.
[4]陆佳馨,王一婧,张赟,等.杀菌剂M-565对草地早熟禾夏季斑枯病的防效[J].江苏农业科学,2021,49(1):88.
Lu Jiaxin,et al.Control effects of fungicide M-565 on Kentucky bluegrass summer patch[J].Jiangsu Agricultural Sciences,2021,49(11):88.
[5]顾天潇,冯陈尉,郭枭,等.我国主要玉米病毒病的鉴定及分类研究进展[J].江苏农业科学,2023,51(9):1.
Gu Tianxiao,et al.Research progress on identification and taxonomy of major maize virus diseases in China[J].Jiangsu Agricultural Sciences,2023,51(11):1.
[6]刘浩浩,李黎,刘巍,等.植物微生物组群落构建及其病害防治应用进展[J].江苏农业科学,2024,52(14):7.
Liu Haohao,et al.Research progress on plant microbiome construction and its application in plant disease control[J].Jiangsu Agricultural Sciences,2024,52(11):7.