[1]Hao W,Lin H X. Toward understanding genetic mechanisms of complex traits in rice[J]. Genet Genomics,2010,37(10):653-666.
[2]Zuo J R,Li J Y.Molecular dissection of complex agronomic traits of rice:a team effort by Chinese scientists in recent years[J]. National Science Review,2014,1(2):253-276.
[3]高继平,祁澎,林鸿宣. 水稻产量数量性状的遗传调控机制研究进展[J]. 中国科学:生命科学,2013,43(12):1007-1015.
[4]张分云,李宏,周向阳,等. 水稻产量分子设计育种研究进展[J]. 分子植物育种,2013,11(6):663-672.
[5]Xing Y Z,Zhang Q F. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology,2010,61:421-442.
[6]顾铭洪. 水稻高产育种中一些问题的讨论[J]. 作物学报,2010,36(9):1431-1439.
[7]Khush G S. What it will take to feed 5 billion rice consumers in 2030[J]. Plant Mol Biol,2005,59(1):1-6.
[8]Zhuang J Y,Fan Y Y,Rao Z M,et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice[J]. Theoretical and Applied Genetics,2002,105(8):1137-1145.
[9]Xing Y Z,Tan Y F,Hua P J,et al.Characterization of the main effects,epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice[J]. Theor Appl Genet,2002,105(2):248-257.
[10]Li J X,Yu S B,Xu C G,et al.Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid[J]. Theor Appl Genet,2000,101(1):248-254.
[11]Hittalmani S,Huang N,Courtois B,et al. Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia[J]. Theoretical and Applied Genetics,2003,107(4):679-690.
[12]Septiningsih E M,Prasetiyono J,Lubis E,et al. Identification of quantitative trait loci for yield and yield componentsin an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon[J]. Theor Appl Genet,2003,107(8):1419-1432.
[13]Li X B,Yan W G,Agrama H,et al. Mapping QTLs for improving grain yield using the USDA rice mini-core collection[J]. Planta,2011,234(2):347-361.
[14]Bai X F,Luo L J,Yan W H,et al. Quantitative trait loci for rice yield-related traits using recombinant inbred lines derived from two diverse cultivars[J]. Journal of Genetics,2011,90(2):209-215.
[15]Gao Z Y,Zhao S C,He W M,et al. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(35):14492-14497.
[16]Kotla A,Agarwal S,Yadavalli V R,et al. Quantitative trait loci and candidate genes for yieldandrelated traits in Madhukaro×Swarna RIL population of rice[J]. Journal of Crop Science and Biotechnology,2013,16(1):35-44.
[17]Bai X F,Wu B,Xing Y Z. Yield-related QTLs and their applications in rice genetic improvement[J]. Journal of Integrative Plant Biology,2012,54(5):300-311.
[18]Ikeda M,Miura K,Aya K,et al. Genes offering the potential for designing yield-related traitsin rice[J]. Current Opinion in Plant Biology,2013,16(2):213-220.
[19]Zong G,Wang A H,Wang L,et al. A pyramid breeding of eight grain-yield related quantitativetrait loci based on marker-assistant and phenotype selection in rice(Oryza sativa L.)[J]. Journal of Genetics and Genomics,2012,39(7):335-350.
[20]Xie X B,JinF X,Song M H,et al. Fine mapping of a yield-enhancing QTL cluster associatedwith transgressive variation in an Oryza sativa×O. rufipogon cross[J]. Theor Appl Genet,2008,116(5):613-622.
[21]Li S Q,Cui G K,Guan C R,et al.QTL detection for rice grain shape using chromosome single segment substitution lines[J]. Rice Science,2011,18(4):273-278.
[22]Song X J,Huang W,Shi M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.
[23]Weng J F,Gu S H,Wan X Y,et al. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J]. Cell Research,2008,18(12):1199-1209.
[24]Wang S K,Wu K,Yuan Q B,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[25]Fan C C,Xing Y Z,Mao H L,et al.GS3,a major QTL for grain length and weight and minor QTL for grain width and thickness in rice,encodes a putative transmembrane protein[J]. Theor Appl Genet,2006,112(6):1164-1171.
[26]Mao H L,Sun S Y,Yao J L,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. PANS,2010,107(45):19579-19584.
[27]Takano-Kai N,Doi K,Yoshimura A. GS3 participates in stigma exsertion as well as seed length in rice[J]. Breeding Science,2011,61(3):244-250.
[28]Takano-Kai N,Jiang H,Powell A,et al. Multiple and independent origins of short seeded alleles of GS3 in rice[J]. Breeding Science,2013,63(1):77-85.
[29]Anand D,Baunthiyal M,Krishnan S G,et al. Novel InDel variation in GS3 locus and development of InDel based marker for marker assisted breeding of short grain aromatic rices[J]. Journal of Plant Biochemistry and Biotechnology,2015,24(1):120-127.
[30]Zhang X J,Wang J F,Huang J,et al. Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(52):21534-21539.
[31]Qi P,Lin Y S,Song X J,et al. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research,2012,22(12):1666-1680.
[32]Li Y B,Fan C C,Xing Y Z,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12):1266-1269.
[33]Qiu X J,Gong R,Tan Y B,et al. Mapping and characterization of the major quantitative traitlocus qSS7 associated with increased length and decreased widthof rice seeds[J]. Theor Appl Genet,2012,125(8):1717-1726.
[34]Li S C,Li W B,Huang B,et al. Natural variation in PTB1 regulates rice seed settingrate by controlling pollen tube growth[J]. Nature Communication,2013(4):1-13.
[35]Tang S Q,Shao G N,Wei X J,et al.QTL mapping of grain weight in rice and the validation of the QTL qTGW3.2[J]. Gene,2013,527(1):201-206.
[36]Ishimaru K.Identification of a locus increasing rice yield and physiological analysis of its function[J]. Plant Physiol,2003,133(3):1083-1090.
[37]Ishimaru K,Hirotsu N,Madoka Y,et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics,2013,45(6):707-711.
[38]Sreenivasulu N,Schnurbusch T. A genetic playground for enhancing grain number in cereals[J]. Trends in Plant Science,2012,17(2):91-101.
[39]Tian F,Zhu Z F,Zhang B S,et al. Fine mapping of a quantitative trait locus for grain number per panicle from wild rice(Oryza rufipogon Griff.)[J]. Theor Appl Genet,2006,113(4):619-629.
[40]张玉屏,朱德峰,曹卫星,等. 不同穗型水稻品种穗部参数及其相互关系[J]. 云南农业大学学报,2010,25(3):327-332.
[41]何宗顺,李雪梅,吴昌银. 水稻穗大小决定基因PS1的遗传分析与克隆[J]. 分子植物育种,2012,10(4):380-387.
[42]Cai H Y,Diao S,He Y G,et al.Genetic and physical mapping of qHY-8,a pleiotropic QTL for heading date and yield-related traits in rice[J]. Euphytica,2012,184:109-118.
[43]Zhu Z F,Tan L B,Fu Y C,et al. Genetic control of inflorescence architecture during rice domestication[J]. Nature Communications,2013(4):1-8.
[44]Ishii T,Numaguchi K,Miura K,et al. OsLG1 regulates a closed panicle trait in domesticated rice[J]. Nature Genetics,2013,45(4):462-465.
[45]Dong X X,Wang X Y,Zhang L S,et al. Identification and characterization of OsEBS,a gene involved in enhanced plant biomass and spikelet number in rice[J]. Plant Biotechnology Journal,2013,11(9):1044-1057.
[46]Kong F N,Wang J Y,Zou J C,et al. Molecular tagging and mapping of the erect panicle geneinrice[J]. Molecular Breeding,2007,19(4):297-304.
[47]Wang J Y,Nakazaki T,Chen S Q,et al. Identification and characterization of the erect-pose panicle gene EP conferring high grain yield in rice (Oryza sativa L.)[J]. Theor Appl Genet,2009,119(1):85-91.
[48]Zhu K M,Tang D,Yan C J,et al. ERECT PANICLE2 encodes a novel protein that regulates panicle erectness in Indica rice[J]. Genetics,2010,184(2):343-350.
[49]Piao R H,Jiang W Z,Ham T H,et al. Map-based cloning of the ERECT PANICLE3 gene in rice[J]. Theor Appl Genet,2009,119:1497-1506.
[50]Qiao Y L,Piao R H,Shi J X,et al. Fine mapping and candidate gene analysis of dense and erectpanicle 3,DEP3,which confers high grain yield in rice(Oryza sativa L.)[J]. Theor Appl Genet,2011,122:1439-1449.
[51]Obara M,Sato T,Sasaki S,et al. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice[J]. Theor Appl Genet,2004,110(1):1-11.
[52]Ohsumi A,Takai T,Ida M,et al. Evaluation of yield performance in rice near-isogenic lines with increased spikelet number[J]. Field Crops Research,2011,120(1):68-75.
[53]Zhu J Y,Zhou Y,Liu Y H,et al. Fine mapping of a major QTL controlling panicle number in rice[J]. Molecular Breeding,2011,27(2):171-180.
[54]Taguchi-Shiobara F,Kawagoe Y,Kato H,et al. A loss-of-function mutation of rice DENSE PANICLE 1 causes semi-dwarfness and slightly increased number of spikelets[J]. Breeding Science,2011,61(1):17-25.
[55]Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[56]Miura K,Ikeda M,Matsubara A,et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics,2010,42(6):545-549.
[57]Zhang Z Y,Li J J,Yao G X,et al. Fine mapping and cloning of the grain number per-panicle gene(Gnp4)on chromosome 4 in rice(Oryza sativa L.)[J]. Agricultural Sciences in China,2011,10(12):1825-1833.
[58]Li M,Tang D,Wang K J,et al. Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J]. Plant Biotechnology Journal,2011,9(9):1002-1013.
[59]Jiao Y Q,Wang Y H,Xue D W,et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics,2010,42(6):541-544.
[60]Tan L B,Li X R,Liu F X,et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics,2008,40(11):1360-1364.
[61]Zhang Z H,Wang K,Guo L,et al. Pleiotropism of photoperiod-insensitive allele of Hd1 on heading date,plant height and yield trails in rice[J]. PLoS One,2012,7(12):e52538.
[62]Nonoue Y,Fujino K,Hirayama Y,et al. Detection of quantitative trait loci controlling extremely early heading in rice[J]. Theor Appl Genet,2008,116(5):715-722.
[63]Xue W Y,Xing Y Z,Weng X Y,et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics,2008,40(6):761-767.
[64]Yan W H,Liu H Y,Zhou X C,et al. Natural variation in Ghd7.1 plays an important role ingrain yield and adaptation in rice[J]. Cell Research,2013,23(7):969-971.
[65]Liu T M,Liu H Y,Zhang H,et al. Validation and characterization of Ghd7.1,a major quantitative trait locus with pleiotropic effects on spikelets per panicle,plant height,and heading date in rice (Oryza sativa L.)[J]. Journal of Integrative Plant Biology,2013,55(10):917-927.
[66]Wei X J,Xu J F,Guo H N,et al. DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously[J]. Plant Physiology,2010,153(4):1747-1758.
[67]YanW H,Wang P,Chen H X,et al. A major QTL,Ghd8,plays pleiotropic roles in regulating grain productivity,plant height,and heading date in rice[J]. Molecular Plant,2011,4(2):319-330.
[68]Cai H Y,Diao S,HeY G,et al. Genetic and physical mapping of qHY-8,a pleiotropic QTL for heading date and yield-related traits in rice[J]. Euphytica,2012,184(1):109-118.
[69]张天术,张其茂,彭顺光,等. 超级杂交稻新组合两优1128超高产综合栽培技术[J]. 湖南农业科学,2010(16):32-34.
[70]Li S C,Liu M W,Wang S Q,et al. Fine mapping of a dominant minute-grain gene,Mi3,in rice[J]. Molecular Breeding,2012,30:1045-1051.
[71]Sun H Y,Qian Q,Wu K,et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics,2014,46(4):652-656.
[72]von Caemmerer S,Quick W P,Furbank R T. The development of C4 rice:current progress and future challenges[J]. Science,2012,336(6089):1671-1672.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]吴丽军,孙小凤,张荣,等.硒对不同品种春油菜含硒量、生物量及产量的影响[J].江苏农业科学,2013,41(04):80.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]国鸿蔷,谢艳红.膜下滴灌条件下不同水肥设计对烟草生长和产量的影响[J].江苏农业科学,2013,41(04):96.
[6]王朝海,陈春艳,顾尚敬,等.不同覆土高度对马铃薯产量及其构成的影响[J].江苏农业科学,2013,41(04):101.
[7]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(13):56.
[8]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(13):62.
[9]朱志武,刘雪基,陈震,等.烯效唑对油菜植株及产量性状的影响[J].江苏农业科学,2013,41(05):77.
Zhu Zhiwu,et al.Effect of uniconazole on growth and yield traits of rapeseed[J].Jiangsu Agricultural Sciences,2013,41(13):77.
[10]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(13):132.
[11]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[12]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(13):60.
[13]寇祥明,张家宏,毕建花,等.苏中勤泥土稻区不同施氮量对水稻产量及经济效益的影响[J].江苏农业科学,2013,41(07):45.
Kou Xiangming,et al.Effects of different nitrogen levels on rice yield and economic benefits in Central Jiangsu[J].Jiangsu Agricultural Sciences,2013,41(13):45.
[14]李文西,张月平,毛伟,等.水稻磷肥施用效果、经济效益及推荐用量[J].江苏农业科学,2013,41(10):61.
Li Wenxi,et al.Application effect,economic benefits and recommended dosage of phosphatic fertilizer in paddy fields[J].Jiangsu Agricultural Sciences,2013,41(13):61.
[15]周新伟,邱业先,沈明星,等.茶多酚与尿素配合施用对水稻产量及土壤氮含量的影响[J].江苏农业科学,2013,41(12):52.
Zhou Xinwei,et al.Effect of tea polyphenols and urea combined application on rice yield and soil nitrogen contents[J].Jiangsu Agricultural Sciences,2013,41(13):52.
[16]陈宏涛,李晓蕾,马艳,等.保护性耕作节水栽培新技术体系下钾对水稻产量与品质的影响[J].江苏农业科学,2014,42(01):64.
Chen Hongtao,et al.Effect of potassium on yield and quality of rice under conservation tillage and water-saving cultivation technology system[J].Jiangsu Agricultural Sciences,2014,42(13):64.
[17]王丹,付立东.氮肥不同施入量对水稻新品种盐粳939产量的影响[J].江苏农业科学,2014,42(05):73.
Wang Dan,et al.Effect of different amounts of nitrogen fertilizer on yield of new rice cultivar “Yanjing 939”[J].Jiangsu Agricultural Sciences,2014,42(13):73.
[18]胡法龙,郑桂萍,于洪明,等.寒地水稻不同群体叶面积指数、干物质量与产量的关系[J].江苏农业科学,2014,42(05):93.
Hu Falong,et al.Relationship between leaf area index,dry matter weight and yield of different rice groups in cold region[J].Jiangsu Agricultural Sciences,2014,42(13):93.
[19]蔡永盛,郑桂萍,奚浩然,等.高垩白与低垩白水稻穗部性状及产量的比较[J].江苏农业科学,2014,42(12):79.
Cai Yongsheng,et al.Comparative study on panicle traits and yield between high chalky rice and low chalky rice[J].Jiangsu Agricultural Sciences,2014,42(13):79.
[20]刘郁,于亚辉,桑海旭,等.滨海稻区水稻纹枯病对稻米食味及产量的影响[J].江苏农业科学,2015,43(04):122.
Liu Yu,et al.Effects of sheath blight on taste value and yield of rice in coastal rice region[J].Jiangsu Agricultural Sciences,2015,43(13):122.