|本期目录/Table of Contents|

[1]刘笑生,陆海鹰,崔红标,等.秸秆生物炭还田应用及环境风险综述[J].江苏农业科学,2018,46(24):28-35.
 Liu Xiaosheng,et al.Field application of straw biochar and its environment risk:a review[J].Jiangsu Agricultural Sciences,2018,46(24):28-35.
点击复制

秸秆生物炭还田应用及环境风险综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第46卷
期数:
2018年第24期
页码:
28-35
栏目:
专论与综述
出版日期:
2018-12-20

文章信息/Info

Title:
Field application of straw biochar and its environment risk:a review
作者:
刘笑生1 陆海鹰2 崔红标1 胡友彪1
1.安徽理工大学地球与环境学院,安徽淮南 232001; 2.江苏省农业科学院农业资源与环境研究所,江苏南京 210014
Author(s):
Liu Xiaoshenget al
关键词:
土壤生物炭秸秆还田农业安全
Keywords:
-
分类号:
S216.2;X712
DOI:
-
文献标志码:
A
摘要:
生物炭是生物质在限氧环境下通过热化学转化得到的产物。农作物秸秆数量多、来源广,是制备生物炭的主要原料。秸秆生物炭在改善土壤通气性、改良土壤酸性、提高土壤阳离子交换量及促进土壤微生物的生长方面具有较好的效果。但秸秆生物炭对土壤的改良效果受原料种类、制备工艺、土壤环境等多方面因素影响,且长期还田效应仍不明确。综述秸秆生物炭还田对土壤理化性质改良、污染修复和粮食产量提升等方面的影响,并就秸秆生物炭原料管理、制备过程、施用过程及长期效应等方面讨论秸秆生物炭还田的环境风险,最后对秸秆生物炭未来研究方向进行展望,以期为秸秆生物炭的合理应用提供参考。
Abstract:
-

参考文献/References:

[1]郭冬生,黄春红. 近10年来中国农作物秸秆资源量的时空分布与利用模式[J]. 西南农业学报,2016,29(4):948-954.
[2]游东海. 秸秆直接还田效果及秸秆热解制成生物炭还田模拟研究[D]. 杨凌:西北农林科技大学,2012.
[3]Lehmann J. A handful of carbon[J]. Nature,2007,447(7141):143-144.
[4]Marris E. Putting the carbon back:black is the new green[J]. Nature,2006,442(713):624-626.
[5]Woolf D,Amonette J E,Street-Perrott F A,et al. Sustainable biochar to mitigate global climate change[J]. Nature Communications,2010,1(5):56.
[6]王欣,尹带霞,张凤,等. 生物炭对土壤肥力与环境质量的影响机制与风险解析[J]. 农业工程学报,2015,31(4):248-257.
[7]Lehmann J,Rillig M C,Thies J,et al. Biochar effects on soil biota:a review[J]. Soil Biology and Biochemistry,2011,43(9):1812-1836.
[8]Tan Z X,Lin C S,Ji X Y,et al. Returning biochar to fields:a review[J]. Applied Soil Ecology,2017,116:1-11.
[9]于姣妲,殷丹阳,李莹,等. 生物炭对土壤磷素循环影响机制研究进展[J]. 江苏农业科学,2017,45(18):17-21.
[10]Liu N,Charrua A B,Weng C H,et al. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution:a comparative study[J]. Bioresource Technology,2015,198:55-62.
[11]Liang B,Lehmann J,Solomon D,et al. Black carbon increases cation exchange capacity in soils[J]. Soil Science Society of America Journal,2006,70(5):1719-1730.
[12]Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment,2007,5(7):381-387.
[13]Glaser B,Haumaier L,Guggenberger G,et al. Black carbon in soils:the use of benzenecarboxylic acids as specific markers[J]. Organic Geochemistry,1998,29(4):811-819.
[14]Kuzyakov Y,Subbotina I,Chen H Q,et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling[J]. Soil Biology and Biochemistry,2009,41(2):210-219.
[15]Purakayastha T J,Kumari S,Pathak H. Characterisation,stability,and microbial effects of four biochars produced from crop residues[J]. Geoderma,2015,239-240:293-303.
[16]Pukalchik M,Mercl F,Panova M,et al. The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar,wood ash,and humic substances amendments[J]. Environmental Pollution,2017,229:516-524.
[17]Ho S H,Chen Y D,Yang Z K,et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology,2017,246:142-149.
[18]Yue Y,Lin Q M,Xu Y Q,et al. Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics[J]. Journal of Analytical and Applied Pyrolysis,2017,124:355-361.
[19]张向前,侯国军,张玉虎,等. 不同产地水稻秸秆制备生物炭结构特征及其理化性质[J]. 环境工程,2017,35(9):122-126.
[20]Song D L,Tang J W,Xi X Y,et al. Responses of soil nutrients and microbial activities to additions of maize straw biochar and chemical fertilization in a calcareous soil[J]. European Journal of Soil Biology,2018,84:1-10.
[21]韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州:中国科学院大学(中国科学院广州地球化学研究所),2017.
[22]Shen Z J,Zhang Y Y,Jin F,et al. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars[J]. Science of the Total Environment,2017,609:1401-1410.
[23]Glaser B,Lehmann J,Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:a review[J]. Biology and Fertility of Soils,2002,35(4):219-230.
[24]Zhang A,Bian R J,Pan G X,et al. Effects of biochar amendment on soil quality,crop yield and greenhouse gas emission in a Chinese rice paddy:a field study of 2 consecutive rice growing cycles[J]. Field Crops Research,2012,127:153-160.
[25]Burrell L D,Zehetner F,Rampazzo N,et al. Long-term effects of biochar on soil physical properties[J]. Geoderma,2016,282:96-102.
[26]Yuan J H,Xu R K,Qian W,et al. Comparison of the ameliorating effects on an acidic ultisol between four crop straws and their biochars[J]. Journal of Soils and Sediments,2011,11(5):741-750.
[27]Wu W X,Yang M,Feng Q B,et al. Chemical characterization of rice straw-derived biochar for soil amendment[J]. Biomass and Bioenergy,2012,47(4):268-276.
[28]杨敏. 水稻秸秆生物质炭在稻田土壤中的稳定性及其机理研究[D]. 杭州:浙江大学,2013.
[29]Cheng C H,Lehmann J,Thies J E,et al. Oxidation of black carbon by biotic and abiotic processes[J]. Organic Geochemistry,2006,37(11):1477-1488.
[30]Guo Y,Tang W,Wu J G,et al. Mechanism of Cu(Ⅱ) adsorption inhibition on biochar by its aging process[J]. Journal of Environmental Sciences,2014,26(10):2123-2130.
[31]葛顺峰,彭玲,任饴华,等. 秸秆和生物质炭对苹果园土壤容重、阳离子交换量和氮素利用的影响[J]. 中国农业科学,2014,47(2):366-373.
[32]陈红霞,杜章留,郭伟,等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报,2011,22(11):2930-2934.
[33]Chintala R,Schumacher T E,Kumar S,et al. Molecular characterization of biochars and their influence on microbiological properties of soil[J]. Journal of Hazardous Materials,2014,279:244-256.
[34]Brewer C E,Brown R C. Biochar[M]. Amsterdam:Elsevier,2012:357-384.
[35]Dong D,Yang M,Wang C,et al. Responses of methane emissions and rice yield to applications of biochar and straw in a paddy field[J]. Journal of Soils and Sediments,2013,13(8):1450-1460.
[36]杨惟薇,张超兰,潘丽萍,等. 水稻秸秆和蚕沙生物炭对玉米植株镉累积的影响[J]. 西南农业学报,2017,30(5):1115-1120.
[37]杨刚,周威宇. 生物炭对盐碱土壤理化性质、生物量及玉米苗期生长的影响[J]. 江苏农业科学,2017,45(16):68-72.
[38]鲁新蕊,陈国双,李秀军. 酸化生物炭改良苏打盐碱土的效应[J]. 沈阳农业大学学报,2017,48(4):462-466.
[39]万海涛,刘国顺,田晶晶,等. 生物炭改土对植烟土壤理化性状动态变化的影响[J]. 山东农业科学,2014,46(4):72-76.
[40]郑加玉,张忠锋,程 森,等. 稻壳生物炭对整治烟田土壤养分及烟叶产质量的影响[J]. 中国烟草科学,2016,37(4):6-12.
[41]Zhang A F,Cui L Q,Pan G X,et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain,China[J]. Agriculture Ecosystems & Environment,2010,139(4):469-475.
[42]Yin D X,Wang X,Peng B,et al. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system[J]. Chemosphere,2017,186:928-937.
[43]Shen X,Huang D Y,Ren X F,et al. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management,2016,168(1):245-251.
[44]Zheng R L,Cai C,Liang J H,et al. The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd,Zn,Pb,As in rice (Oryza sativa L.) seedlings[J]. Chemosphere,2012,89(7):856-862.
[45]Keiluweit M,Nico P S,Johnson M G,et al. Dynamic molecular structure of plant Biomass-Derived black carbon (biochar)[J]. Environmental Science & Technology,2010,44(4):1247-1253.
[46]Ahmad M,Rajapaksha A U,Lim J E,et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere,2014,99(3):19-33.
[47]Ronsse F,van Hecke S,Dickinson D,et al. Production and characterization of slow pyrolysis biochar:influence of feedstock type and pyrolysis conditions[J]. Global Change Biology Bioenergy,2013,5(2):104-115.
[48]Kong H L,He J,Gao Y Z,et al. Cosorption of phenanthrene and mercury(Ⅱ) from aqueous solution by soybean stalk-based biochar[J]. Journal of Agricultural and Food Chemistry,2011,59(22):12116-12123.
[49]吴伟祥. 生物质炭土壤环境效应[M]. 北京:科学出版社,2015:359-561.
[50]Cao Y N,Yang B S,Song Z H,et al. Wheat straw biochar amendments on the removal of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil[J]. Ecotoxicology and Environmental Safety,2016,130:248-255.
[51]Zhao N,Zhao C F,Lv Y Z,et al. Adsorption and coadsorption mechanisms of Cr(Ⅵ) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere,2017,186:422-429.
[52]Zhang R H,Li Z G,Liu X D,et al. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering,2017,98:183-188.
[53]陈玲桂. 生物炭输入对农田土壤重金属迁移的影响研究[D]. 杭州:浙江大学,2013.
[54]Lu K P,Yang X,Gielen G,et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd,Cu,Pb and Zn) in contaminated soil[J]. Journal of Environmental Management,2017,186:285-292.
[55]Kus'mierz M,Oleszczuk P,Kraska P,et al. Persistence of polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil[J]. Chemosphere,2016,146:272-279.
[56]Khan S,Waqas M,Ding F,et al. The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.)[J]. Journal of Hazardous Materials,2015,300:243-253.
[57]Wang Y,Wang Y J,Wang L,et al. Reducing the bioavailability of PCBs in soil to plant by biochars assessed with triolein-embedded cellulose acetate membrane technique[J]. Environmental Pollution,2013,174(5):250-256.
[58]Liang F,Li G,Lin Q,et al. Crop yield and soil properties in the first 3 years after biochar application to a calcareous soil[J]. Journal of Integrative Agriculture,2014,13(3):525-532.
[59]Liu Z X,Chen X M,Jing Y,et al. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil[J]. Catena,2014,123:45-51.
[60]韩翠莲,霍轶珍,朱冬梅. 生物炭对土壤肥力及玉米产量的影响[J]. 江苏农业科学,2017,45(16):54-57.
[61]Akhtar S S,Li G T,Andersen M N. Biochar enhances yield and quality of tomato under reduced irrigation[J]. Agricultural Water Management,2014,138(2):37-44.
[62]Lai W Y,Lai C M,Ke G R,et al. The effects of woodchip biochar application on crop yield,carbon sequestration and greenhouse gas emissions from soils planted with rice or leaf beet[J]. Journal of the Taiwan Institute of Chemical Engineers,2013,44(6):1039-1044.
[63]Major J,Rondon M,Molina D,et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil,2010,333(1/2):117-128.
[64]Borchard N,Siemens J,Ladd B,et al. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice[J]. Soil and Tillage Research,2014,144(4):184-194.
[65]Safaei K M,Zhang Q,LIn D,et al. Biochar:a review of its impact on pesticide behavior in soil environments and its potential applications[J]. Journal of Environmental Sciences,2016,44(6):269-279.
[66]Wang N,Xue X M,Juhasz A L,et al. Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic[J]. Environmental Pollution,2017,220(Part A):514-522.
[67]Shu R,Wang Y J,Zhong H. Biochar amendment reduced methylmercury accumulation in rice plants[J]. Journal of Hazardous Materials,2016,313:1-8.
[68]周静,崔红标. 规模化治理土壤重金属污染技术工程应用与展望——以江铜贵冶周边区域九牛岗土壤修复示范工程为例[J]. 中国科学院院刊,2014,29(3):336-343,272.
[69]Freddo A,Cai C,Reid B J. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar[J]. Environmental Pollution,2012,171(4):18-24.
[70]Koppolu L,Agblevor F A,Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part Ⅱ:Lab-scale pyrolysis of synthetic hyperaccumulator biomass[J]. Biomass and Bioenergy,2003,25(6):651-663.
[71]Creamer R E,Rimmer D L,Black H . Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term?[J]. Soil Use and Management,2008,24(1):37-46.
[72]湛方栋,陈建军,秦丽,等. 镉铅污染的玉米秸秆还田对蚕豆生长、养分和镉铅含量的影响[J]. 农业环境科学学报,2016,35(4):661-668.
[73]Ordoez J C,van Bodegom P M,Witte J,et al. A global study of relationships between leaf traits,climate and soil measures of nutrient fertility[J]. Global Ecology and Biogeography,2009,18(2):137-149.
[74]Niu W J,Han L J,Liu X,et al. Twenty-two compositional characterizations and theoretical energy potentials of extensively diversified Chinas crop residues[J]. Energy,2016,100:238-250.
[75]Lee E H,Park R,Kim H,et al. Hydrodeoxygenation of guaiacol over Pt loaded zeolitic materials[J]. Journal of Industrial and Engineering Chemistry,2016,37:18-21.
[76]Heidari A,Stahl R,Younesi H,et al. Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor[J]. Journal of Industrial and Engineering Chemistry,2014,20(4):2594-2602.
[77]王建安,刘国顺,任天宝.生物炭生产用新型炭化炉:CN105038820A [P]. 2015-06-20.
[78]Schimmelpfennig S,Glaser B. One step forward toward characterization:some important material properties to distinguish biochars[J]. Journal of Environment Quality,2012,41(4):1001-1013.
[79]Dutta T,Kwon E,Bhattacharya S S,et al. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil:a review[J]. Global Change Biology Bioenergy,2017,9(6):990-1004.
[80]Kus'mierz M,Oleszczuk P. Biochar production increases the polycyclic aromatic hydrocarbon content in surrounding soils and potential cancer risk[J]. Environmental Science and Pollution Research,2014,21(5):3646-3652.
[81]仓龙,朱向东,汪玉,等. 生物质炭中的污染物含量及其田间施用的环境风险预测[J]. 农业工程学报,2012,28(15):163-167.
[82]Zhang H F,Hu D W,Chen J M,et al. Particle size distribution and polycyclic aromatic hydrocarbons emissions from agricultural crop residue burning[J]. Environmental Science & Technology,2011,45(13):5477-5482.
[83]Singh B,Singh B P,Cowie A L. Characterisation and evaluation of biochars for their application as a soil amendment[J]. Australian Journal of Soil Research,2010,48(7):516-525.
[84]Hale S E,Lehmann J,Rutherford D,et al. Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars[J]. Environmental Science & Technology,2012,46(5):2830-2838.
[85]Quilliam R S,Rangecroft S,Emmett B A,et al. Is biochar a source or sink for polycyclic aromatic hydrocarbon (PAH) compounds in agricultural soils?[J]. Global Change Biology Bioenergy,2013,5(2):96-103.
[86]Fabbri D,Rombolà A G,Torri C A. Determination of polycyclic aromatic hydrocarbons in biochar and biochar amended soil[J]. Journal of Analytical and Applied Pyrolysis,2013,103(23):60-67.
[87]Cho S H,Kim K H,Jeon Y J,et al. Pyrolysis of microalgal biomass in carbon dioxide environment[J]. Bioresource Technology,2015,193:185-191.
[88]Li Y G,Liao Y,He Y,et al. Polycyclic aromatic hydrocarbons concentration in straw biochar with different particle size[J]. Procedia Environmental Sciences,2016,31:91-97.
[89]林晓青. 废物焚烧炉二口恶英硫氨基复合阻滞的研究[D]. 杭州:浙江大学,2015.
[90]蔡婧. 城市个体黑碳暴露特征与儿童呼吸道健康效应关系研究[D]. 上海:华东理工大学,2013.
[91]Rondon M A,Lehmann J,Ramírez J,et al. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions[J]. Biology and Fertility of Soils,2007,43(6):699-708.
[92]Liu Y X,Lu H H,Yang S M,et al. Impacts of biochar addition on rice yield and soil properties in a cold waterlogged paddy for two crop seasons[J]. Field Crops Research,2016,191:161-167.
[93]Rechberger M V,Kloss S,Rennhofer H A,et al. Changes in biochar physical and chemical properties:accelerated biochar aging in an acidic soil[J]. Carbon,2017,115:209-219.
[94]Major J,Lehmann J,Rondon M,et al. Fate of soil-applied black carbon:downward migration,leaching and soil respiration[J]. Global Change Biology,2010,16(4):1366-1379.
[95]Singh B,Fang Y,Johnston C T. A fourier-transform infrared study of biochar aging in soils[J]. Soil Science Society of America Journal,2016,80(3):613-622.
[96]Sorrenti G,Masiello C A,Dugan B,et al. Biochar physico-chemical properties as affected by environmental exposure[J]. Science of the Total Environment,2016,563/564:237-246.
[97]Dong X L,Li G T,Lin Q M,et al. Quantity and quality changes of biochar aged for 5 years in soil under field conditions[J]. Catena,2017,159:136-143.
[98]何丽芝,张小凯,吴慧明,等. 生物质炭及老化过程对土壤吸附吡虫啉的影响[J]. 环境科学学报,2015,35(2):535-540.
[99]陈昱,梁媛,郑章琪,等. 老化作用对水稻秸秆生物炭吸附Cd(Ⅱ)能力的影响[J]. 环境化学,2016,35(11):2337-2343.
[100]陈 昱.生物炭对重金属的长期稳定性研究[D]. 苏州:苏州科技大学,2016.
[101]Chen M,Wang D J,Yang F,et al. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions[J]. Environmental Pollution,2017,230:540-549.
[102]Wang D J,Zhang W,Hao X Z,et al. Transport of biochar particles in saturated granular media:effects of pyrolysis temperature and particle size[J]. Environmental Science & Technology,2013,47(2):821-828.

相似文献/References:

[1]蒋宝南,刘腾飞,单建明,等.QuEChERS-GC/μECD法测定土壤中的毒死蜱残留量[J].江苏农业科学,2014,42(12):332.
 Jiang Baonan,et al.Determination of chlorpyrifos residues in soil by QuEChERS-GC/μECD[J].Jiangsu Agricultural Sciences,2014,42(24):332.
[2]李国锋,魏瑞成,王冉.高效液相色谱法测定土壤中联苯与间羟基苯甲酸残留[J].江苏农业科学,2014,42(12):316.
 Li Guofeng,et al.Determination of biphenyl and M-hydroxy benzoic acid residues in soil by high performance liquid chromatography[J].Jiangsu Agricultural Sciences,2014,42(24):316.
[3]史景允,于伟红,梁秋生.蓖麻对镉污染土壤的修复潜力[J].江苏农业科学,2014,42(11):386.
 Shi Jingyun,et al(8).Potential repairing of cadmium contaminated soil by castor oil plant[J].Jiangsu Agricultural Sciences,2014,42(24):386.
[4]何继山,梁杏,李静.土样浸提液电导率与盐分关系的逐步回归分析[J].江苏农业科学,2014,42(10):314.
 He Jishan,et al.Regression analysis of relationship between soil samples leaching solution conductivity and solinity[J].Jiangsu Agricultural Sciences,2014,42(24):314.
[5]徐洪文,卢妍.土壤碳矿化及活性有机碳影响因子研究进展[J].江苏农业科学,2014,42(10):4.
 Xu Hongwen,et al.Research progress on soil carbon mineralization and factors affecting active organic carbon[J].Jiangsu Agricultural Sciences,2014,42(24):4.
[6]李范,李娜,陈建中,等.基于磷脂脂肪酸提取方法的微生物群落结构研究[J].江苏农业科学,2014,42(09):323.
 Li Fan,et al.Study on microbial community structure based on phospholipid fatty acid extraction method[J].Jiangsu Agricultural Sciences,2014,42(24):323.
[7]张乐森,刘悦上,马金芝,等.山东省滨州市设施蔬菜土壤退化防治与修复对策[J].江苏农业科学,2013,41(07):141.
 Zhang Lesen,et al.Control and restoration strategies of facility vegetable soil degradation in Binzhou of Shandong Province[J].Jiangsu Agricultural Sciences,2013,41(24):141.
[8]尹辉,李晖,蒋忠诚,等.典型岩溶区土壤水分的空间异质性研究[J].江苏农业科学,2013,41(07):332.
 Yin Hui,et al.Study on spatial variability of soil water content in typical karst area[J].Jiangsu Agricultural Sciences,2013,41(24):332.
[9]覃怀德,吴炳孙,吴敏,等.橡胶园土壤钾素空间变异与分区管理技术——以海南省琼中县为例[J].江苏农业科学,2013,41(08):326.
 Qin Huaide,et al.Spatial variability and regionalized management of soil potassium nutrient in rubber plantation—Taking Qiongzhong County of Hainan Province as an example[J].Jiangsu Agricultural Sciences,2013,41(24):326.
[10]符勇,周忠发,王昆,等.基于贵州喀斯特高原山区的烟草种植适宜性研究[J].江苏农业科学,2014,42(09):92.
 Fu Yong,et al.Study on planting suitability of tobacco based on Guizhou karst mountain plateau[J].Jiangsu Agricultural Sciences,2014,42(24):92.
[11]陈森,张子谦,李婧,等.土壤镉污染下生物炭对白菜生长及植株镉浓度的影响[J].江苏农业科学,2018,46(05):129.
 Chen Sen,et al.Effects of biochar on growth and cadmium concentration of Chinese cabbage under soil cadmium contamination[J].Jiangsu Agricultural Sciences,2018,46(24):129.
[12]王利春,李银坤,郭文忠,等.施用生物炭对西北旱区有机芥蓝生长的影响及节水效应[J].江苏农业科学,2018,46(06):97.
 Wang Lichun,et al.Influence of biochar on growth of cabbage mustard in arid area of northwestern China and its water-saving effect[J].Jiangsu Agricultural Sciences,2018,46(24):97.
[13]朱永琪,董天宇,宋江辉,等.生物炭影响土壤重金属生物有效性的研究进展[J].江苏农业科学,2018,46(16):9.
 Zhu Yongqi,et al.Research progress of effect of biochar on heavy metal bioavailability in soils[J].Jiangsu Agricultural Sciences,2018,46(24):9.
[14]严陶韬,高婷,周之栋,等.基于文献计量的生物炭土壤效应分析[J].江苏农业科学,2021,49(4):191.
 Yan Taotao,et al.Analysis of biochar soil effect based on bibliometrics[J].Jiangsu Agricultural Sciences,2021,49(24):191.
[15]孙家婉,张振华,赵玉萍,等.生物炭改性及其在农田土壤重金属修复中的应用研究进展[J].江苏农业科学,2022,50(10):9.
 Sun Jiawan,et al.Research progress on biochar modification and its application in heavy metal remediation of farmland soil[J].Jiangsu Agricultural Sciences,2022,50(24):9.
[16]穆晓坤,李文慧,魏彦凤,等.不同物料下咸、淡水灌溉对设施黄瓜土壤特性和品质的影响[J].江苏农业科学,2023,51(18):115.
 Mu Xiaokun,et al.Effects of salt and fresh water irrigation under different materials on soil characteristics and quality of facility cucumber[J].Jiangsu Agricultural Sciences,2023,51(24):115.
[17]余高,陈芬,卢心,等.不同施肥对幼龄柑橘园土壤养分及酶活性变化的影响[J].江苏农业科学,2023,51(20):218.
 Yu Gao,et al.Effects of different fertilization on soil nutrients and enzyme activities in young citrus orchards[J].Jiangsu Agricultural Sciences,2023,51(24):218.

备注/Memo

备注/Memo:
收稿日期:2018-03-07
基金项目:国家自然科学基金青年科学基金(编号:41601320、41601340);安徽省高等学校自然科学研究项目(编号:KJ2016A191);江苏省自然科学基金青年科学基金(编号:BK20160594)。
作者简介:刘笑生(1993—),男,江苏泰州人,硕士研究生,主要研究方向为土壤重金属污染修复。E-mail:1028330144@qq.com。
通信作者:陆海鹰,博士,副研究员,主要研究方向为滩涂盐土改良与面源污染防控,E-mail:l
更新日期/Last Update: 2018-12-20