[1]许文波,田亦陈. 作物种植面积遥感提取方法的研究进展[J]. 云南农业大学学报.2005,1(20):95-98.
[2]高宏宇,张楠楠. 基于影像光谱特征的作物识别方法探讨[J]. 黑龙江科技信息,2012(17):11.
[3]Wardlow B D,Egbert S L. Large-area crop mapping using time-series MODIS 250 m NDVI data:an assessment for the U.S. Central Great Plains [J]. Remote Sensing of Environment.2008,112:1096-1116.
[4]承继承. 精确农业技术与应用[M]. 北京:科学出版社,2004.
[5]陈述彭,赵英时. 遥感地学分析[M]. 北京:测绘出版社,1990.
[6]熊利亚. 中国作物遥感动态监测与估产集成系统[M]. 北京:中国科学技术出版社,1996.
[7]刘东,封志明,杨艳昭,等. 中国粮食生产发展特征及土地资源承载力空间格局现状[J]. 农业工程学报,2011,27(7):1-6.
[8]周成虎,骆剑承. 遥感影像地学理解与分析[M]. 北京:科学出版社,1984.
[9]舒田,岳延滨,李莉婕,等. 基于高光谱遥感的农作物识别[J]. 江苏农业学报,2016,32(6):1310-1314.
[10]濮静娟. 遥感图像目视解译原理与方法[M]. 北京:中国科学技术出版社,1992.
[11]马霭乃. 遥感目视解译的基本理论与方法[J]. 遥感信息,1987(3):26-29.
[12]王猛,姚慧敏,隋学艳,等. 一种基于地理信息服务平台的小麦种植面积变化监测方法研究[J]. 安徽农业科学,2013,41(8):3728-3730.
[13]谢登峰,张锦水,潘耀忠,等. Landsat8和MODIS融合构建高时空分辨率数据识别秋粮作物[J]. 遥感学报,2015,19(5):791-805.
[14]Azar R,Villa P,Stroppiana D,et al. Assessing in-season crop classification performance using satellite data:a test case in Northern Italy[J]. European Journal of Remote Sensing,2016,49:361-380.
[15]许亮,汪权方,陈志杰,等. 一种快速区分易混农作物的遥感解译方法[J]. 地理空间信息,2017,15(1):59-62
[16]Karila K,Nevalainen O,Krooks A,et al. Monitoring changes in rice cultivated area from SAR and optical satellite images in Ben Tre and Tra Vinh provinces in Mekong Delta,Vietnam[J]. Remote Sensing,2014,6(5):4090-4108.
[17]赵丽花,李卫国,杜培军. 基于多时相HJ卫星的冬小麦面积提取[J]. 遥感信息,2011(2):41-45.
[18]黄德双. 神经网络模式识别系统理论[M]. 北京:电子工业出版社,1996.
[19]修丽娜,刘湘南. 人工神经网络遥感分类方法研究现状及发展趋势探析[J]. 遥感技术与应用,2003(5):339-345.
[20]Chen Y,Zhang X,Wang X,et al. Extraction of crop planting structure in seasons prone to water logging using Landsat8 OLI and MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(21):165-173.
[21]Pandey A,Mishra A. Application of artificial neural networks in yield prediction of potato crop[J]. Russian Agricultural Sciences,2017,43(3):266-272.
[22]王威. 基于模糊数学的遥感图像分类研究[D]. 桂林:桂林理工大学,2012.
[23]赵天杰,李新武,张立新,等. 双频多极化SAR数据与多光谱数据融合的作物识别[J]. 地球信息科学学报,2009,11(1):84-90.
[24]Musande V,Kumar A,Kale K. Cotton crop discrimination using fuzzy classification approach[J]. Journal of the Indian Society of Remote Sensing,2012,40(4):589-597.
[25]姜丽华,杨晓蓉. 基于决策树分类技术的遥感影像分类方法研究[J]. 农业网络信息,2009,22(10):34-36.
[26]程良晓,江涛,谈明洪,等. 基于NDVI时间序列影像的张掖市农作物种植结构提取[J]. 地理信息世界,2016,23(4):37-44.
[27]Dong S W,Sun D F,Li H. Crop decision tree classification extraction based on MODIS NDVI in Beijing[J]. Advanced Materials Research,2014,9:787-790.
[28]田野,张清,李希灿,等. 基于多时相影像的棉花种植信息提取方法研究[J]. 干旱区研究,2017,34(2):423-430.
[29]Friedl M A,Brodley C E,Strahler A H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales [J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):969-977.
[30]Wang L,Xu S,Qi L,et al. Extraction of winter wheat planted area in Jiangsu province using decision tree and mixed-pixel methods[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(5):182-187.
[31]王连喜,徐胜男,李琪,等. 基于决策树和混合像元分解的江苏省冬小麦种植面积提取[J]. 农业工程学报,2016,32(5):182-187.
[32]张顺谦,杨秀蓉. 神经网络和分形纹理在夜间云雾分离中的应用[J]. 遥感学报,2006,10(4):497-501.
[33]刘哲,李智晓,张延宽,等. 基于时序EVI决策树分类与高分纹理的制种玉米识别[J]. 农业机械学报,2015,46(10):321-327.
[34]刘吉凯,钟仕全,徐雅,等. 基于多时相GF-1WFV数据的南方丘陵地区甘蔗种植面积提取[J]. 广东农业科学,2014,41(18):149-154.
[35]Li D,Yang F,Wang X. Study on ensemble crop information extraction of remote sensing images based on SVM and BPNN[J]. Journal of the Indian Society of Remote Sensing,2016:1-9.
[36]Zhang C,Jin H,Liu Z,et al. Seed maize identification based on texture analysis of GF remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(21):183-188.
[37]黄秋燕,肖鹏峰,冯学智,等. 一种基于TV-Gabor模型的高分辨率遥感图像农田信息提取方法[J]. 遥感信息,2014,29(2):77-82.
[38]平跃鹏. 基于MODIS时间序列地表物候特征分析及作物分类[D]. 哈尔滨:哈尔滨师范大学,2016.
[39]Li L,Friedl M,Xin Q,etal. Mapping crop cycles in China using MODIS-EVI time series[J]. Remote Sensing,2014,6(3):2473-249.
[40]刘吉凯,钟仕全,梁文海. 基于多时相Landsat8 OLI影像的作物种植结构提取[J]. 遥感技术与应用,2015,30(4):776-783.
[41]张焕雪,曹新,李强子,等. 基于多时相环境星NDVI时间序列的作物分类研究[J]. 遥感技术与应用,2015,30(2):304-311.
[42]张健康,程彦培,张发旺,等. 基于多时相遥感影像的作物种植信息提取[J]. 农业工程学报,2012,28(2):134-141.
[43]宋茜. 基于GF-1/WFV和面向对象的农作物种植结构提取方法研究[D]. 北京:中国农业科学院,2016.
[44]邓媛媛,巫兆聪,易俐娜,等. 面向对象的高分辨率影像农用地分类[J]. 国土资源遥感,2010,22(4):117-121.
[45]刘明月,王宗明,满卫东,等. 基于MODIS时序数据的Landsat8影像选取及面向对象分类方法的农作物分类[J]. 土壤与作物,2017,6(2):104-112.
[46]Pea J,Gutiérrez P,Hervásmartínez C,et al. Object-Based image classification of summer crops with machine learning methods [J]. Remote Sensing,2014,6(6):5019-5041.
[47]王娜,李强子,杜鑫,等. 单变量特征选择的苏北地区主要农作物遥感识别[J]. 遥感学报,2017,21(4):519-530.
[48]Sonobe R,Tani H,Wang X,et al. Parameter tuning in the support vector machine and random forest and their performances in cross-and same-year crop classification using TerraSAR-X[J]. International Journal of Remote Sensing,2014,35(23):7898-7909.
[49]李卫. 深度学习在图像识别中的研究及应用[D]. 武汉:武汉理工大学,2014.
[50]张加楠,张雪芬,简萌,等. 先验阈值优化卷积神经网络的作物覆盖度提取算法[J]. 信号处理,2017,33(9):1230-1238
[51]梁万杰,曹宏鑫. 基于卷积神经网络的水稻虫害识别[J]. 江苏农业科学,2017,45(20):241-243.
[52]Lavreniuk M S. Convolutional neural network for multi-source deep learning crop classification in Ukraine[C]//AGU Fall Meeting. AGU Fall Meeting Abstracts,2016.
[1]陈鹤群,雷少刚.TerraSAR-X土壤水分反演研究进展[J].江苏农业科学,2013,41(04):327.
[2]王丽爱,谭昌伟,马昌,等.农情信息遥感监测预报模型构建算法研究进展[J].江苏农业科学,2013,41(11):1.
Wang Liai,et al.Research progress of remote sensing forecast modeling algorithms on crop information[J].Jiangsu Agricultural Sciences,2013,41(16):1.
[3]谢斌,吴文良,郭岩彬,等.作物富硒研究进展[J].江苏农业科学,2014,42(01):15.
Xie Bin,et al.Research progress of selenium enrichment of crops[J].Jiangsu Agricultural Sciences,2014,42(16):15.
[4]李章成,李源洪,魏来,等.基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性[J].江苏农业科学,2014,42(01):284.
Li Zhangcheng,et al.Study on correlation between vegetation index and leaf area index and yield of rice based on SPOT5 image analysis[J].Jiangsu Agricultural Sciences,2014,42(16):284.
[5]赵媛,卢凤英.作物内生菌研究进展[J].江苏农业科学,2015,43(10):20.
Zhao Yuan,et al.Research progress on plant endophytic fungus[J].Jiangsu Agricultural Sciences,2015,43(16):20.
[6]康婷婷,居为民,李秉柏.水稻叶面积指数遥感反演方法对比分析[J].江苏农业科学,2015,43(05):366.
Kang Tingting,et al.Contrastive analysis of remote sensing inversion method of rice leaf area index[J].Jiangsu Agricultural Sciences,2015,43(16):366.
[7]张晴晴,齐国红,张云龙.基于改进分水岭算法的作物病害叶片分割方法[J].江苏农业科学,2015,43(02):400.
Zhang Qingqing,et al.Crop disease leaf segmentation method based on improved watershed algorithm[J].Jiangsu Agricultural Sciences,2015,43(16):400.
[8]张 兵,韩 霞,庄 斌,等.介电特性在作物需水诊断中的应用研究进展[J].江苏农业科学,2015,43(02):7.
Zhang Bing,et al.Research progress on application of dielectric property in diagnosis of crop water demand[J].Jiangsu Agricultural Sciences,2015,43(16):7.
[9]马驰.松辽平原土地盐碱化动态监测与遥感分析[J].江苏农业科学,2016,44(07):495.
Ma Chi.Dynamic monitoring and remote sensing analysis of soil salinization in Songliao Plain[J].Jiangsu Agricultural Sciences,2016,44(16):495.
[10]田苗,童杨辉.TRMM卫星降水数据在江苏省的适用性分析[J].江苏农业科学,2016,44(12):440.
Tian Miao,et al.Applicability analysis of TRMM precipitation data in Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(16):440.
[11]张小媛,林陈捷,朱明帮,等.基于作物光谱的耕地质量评价研究进展[J].江苏农业科学,2022,50(2):1.
Zhang Xiaoyuan,et al.Research progress of cultivated land quality evaluation based on crop spectrum[J].Jiangsu Agricultural Sciences,2022,50(16):1.