|本期目录/Table of Contents|

[1]杨奕铭,邸馨瑶,宋怀波.融合超像素分割算法与肢体特征的奶牛躯干精确分割方法[J].江苏农业科学,2020,48(15):253-260.
 Yang Yiming,et al.An accurate segmentation method for cow trunk based on fusion of superpixel segmentation algorithm and body features[J].Jiangsu Agricultural Sciences,2020,48(15):253-260.
点击复制

融合超像素分割算法与肢体特征的奶牛躯干精确分割方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第48卷
期数:
2020年第15期
页码:
253-260
栏目:
农业工程与信息技术
出版日期:
2020-08-05

文章信息/Info

Title:
An accurate segmentation method for cow trunk based on fusion of superpixel segmentation algorithm and body features
作者:
杨奕铭邸馨瑶宋怀波
西北农林科技大学机械与电子工程学院/农业农村部农业物联网重点实验室/陕西省农业信息感知与智能服务重点实验室,陕西杨凌 712100
Author(s):
Yang Yiminget al
关键词:
奶牛躯干分割SLIC算法显著性分析傅里叶描述子
Keywords:
-
分类号:
TP391.41
DOI:
-
文献标志码:
A
摘要:
为了实现奶牛躯干的精确分割,以荷斯坦奶牛为研究对象,首先采用超像素分割算法(simple linear iterative cluster,简称SLIC)与显著性分析相结合的方法获得完整奶牛目标;然后通过设置傅里叶描述子以平滑Canny算子边缘检测的奶牛轮廓;最后采用基于奶牛肢体特征的分割点提取方法提取各分割点并依次连接生成奶牛躯干的分割线。为了验证本研究结果的有效性,使用试验图像库中随机抽取的20幅图像进行了测试,试验结果表明,本研究所提取的奶牛目标与手动提取目标的平均重叠率为96.83%,可以实现不同背景下奶牛目标的准确分割。本研究所提出的奶牛躯干分割方法的平均重叠率为99.86%,表明该方法在奶牛躯干精确分割中准确率较高且相对稳定,可以实现不同站立体态奶牛的高精度分割。
Abstract:
-

参考文献/References:

[1]Yan J J,Yu Y A,Zhu X Y,et al. Object detection by labeling superpixels[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015:5107-5116.
[2]Donghun Yeo,Son J,Han B,et al. Superpixel-based tracking-by-segmentation using markov chains[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017:1812-1821.
[3]何东健,孟凡昌,赵凯旋,等. 基于视频分析的犊牛基本行为识别[J]. 农业机械学报,2016,47(9):294-300.
[4]张满囤,单新媛,于洋,等. 基于小波变换和改进KPCA的奶牛个体识别研究[J]. 浙江农业学报,2017,29(12):2000-2008.
[5]黄文明,张勇,郭海明,等. 荷斯坦后备奶牛生长发育规律的研究进展[J]. 畜牧与兽医,2016,48(5):131-135.
[6]Martiskainen P,Jrvinen M,Jukka-Pekka S,et al. Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines[J]. Applied Animal Behaviour Science,2009,119(1/2):32-38.
[7]顾静秋,王志海,高荣华,等. 基于融合图像与运动量的奶牛行为识别方法[J]. 农业机械学报,2017,48(6):145-151.
[8]Ahn S J,Ko D M,Choi K S. Cow behavior recognition using motion history image feature[C]. International Conference Image Analysis and Recognition,2017.
[9]金一初,马燕. 奶牛图像的分割算法研究[J]. 电子设计工程,2011,19(2):81-84,88.
[10]Nahari R V,Jauhari A,Hidayat R,et al. Image segmentation of cows using thresholding and K-Means method[J]. International Journal of Advanced Engineering,Management and Science,2017,3(9):913-918.
[11]赵凯旋,李国强,何东健. 基于机器学习的奶牛深度图像身体区域精细分割方法[J]. 农业机械学报,2017,48(4):173-179.
[12]李国强,何东健,赵凯旋,等. 基于骨架特征的奶牛肢体分解方法研究[J]. 中国农业科技导报,2017,19(7):87-94.
[13]郭浩,王鹏,马钦,等. 基于深度图像的奶牛体型评定指标获取技术[J]. 农业机械学报,2013,44(增刊1):273-276,229.
[14]Duan H B,Lu G. Elitist chemical reaction optimization for Contour-Based target recognition in aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2845-2859.
[15]Lyu P,Cong Y,Wu W H,et al. Multi-oriented scene text detection via corner localization and region segmentation[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition,2018.
[16]许佳佳,张叶,张赫. 基于改进Harris-SIFT算子的快速图像配准算法[J]. 电子测量与仪器学报,2015,29(1):48-54.
[17]Zhang W C,Shui P L. Contour-based corner detection via angle difference of principal directions of anisotropic Gaussian directional derivatives[J]. Pattern Recognition,2015,48(9):2785-2797.
[18]Li Z Q,Chen J S. Superpixel segmentation using Linear Spectral Clustering[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015:1356-1363.
[19]李智,曲长文,周强,等. 基于SLIC超像素分割的SAR图像海陆分割算法[J]. 雷达科学与技术,2017,15(4):354-358.
[20]Sokic E,Konjicija S. Phase preserving Fourier descriptor for shape-based image retrieval[J]. Signal Processing:Image Communication,2016,40:82-96.
[21]Heng L,Liu Z W,Huang Y L,et al. Quaternion generic fourier descriptor for color object recognition[J]. Pattern Recognition,2015,48(12):3895-3903.
[22]邸馨瑶,焦林,宋怀波. 基于优选傅里叶描述子的粘连条锈病孢子图像分割方法研究[J]. 计算机应用与软件,2018,35(3):193-198.

相似文献/References:

[1]黎江,蒙翠萍,周悦,等.2种奶牛隐性乳房炎检测方法的对比[J].江苏农业科学,2013,41(05):193.
 Li Jiang,et al.Comparative study on two detection methods of recessive mastitis of dairy cow[J].Jiangsu Agricultural Sciences,2013,41(15):193.
[2]刘俊栋,刘海霞,赵佳,等.挥发性脂肪酸对奶牛离体真胃平滑肌收缩的影响[J].江苏农业科学,2013,41(06):166.
 Liu Jundong,et al.Effect of volatile fatty acids on smooth muscle contraction of cow abomasal in vitro[J].Jiangsu Agricultural Sciences,2013,41(15):166.
[3]孙宝丽,陈汝能,吴银宝,等.不同季节、不同生理阶段奶牛粪便的特性[J].江苏农业科学,2014,42(08):187.
 Sun Baoli,et al.Characteristics of dairy cow dung during different seasons and physiological stages[J].Jiangsu Agricultural Sciences,2014,42(15):187.
[4]耿丽微,李泉辉.奶牛数字化虚拟仪器测控网络USB的通信设计[J].江苏农业科学,2016,44(03):431.
 Geng Liwei,et al.USB communication design and research of milk cow digitization virtual instrument measurement and control network[J].Jiangsu Agricultural Sciences,2016,44(15):431.
[5]徐俊,侯玉洁,丁健,等.不同牧草来源及纤维水平对奶牛的影响研究进展[J].江苏农业科学,2013,41(10):153.
 Xu Jun,et al.Research progress for effect of forage sources and fiber levels on dairy cow[J].Jiangsu Agricultural Sciences,2013,41(15):153.
[6]周帮会,翟向和,陈斌,等.奶牛发生胎衣不下的胎盘免疫学及中药防治机理[J].江苏农业科学,2013,41(10):181.
 Zhou Banghui,et al.Placental immunology and traditional Chinese herbal medicine prevention mechanism for retention of dairy cows’ afterbirth[J].Jiangsu Agricultural Sciences,2013,41(15):181.
[7]胡路锋,刘贤侠,王少华,等.应用B超辅助诊断奶牛临床子宫疾病[J].江苏农业科学,2013,41(12):229.
 Hu Lufeng,et al.Application of B-mode ultrasonography in diagnosis of clinical uterus diseases of dairy cows[J].Jiangsu Agricultural Sciences,2013,41(15):229.
[8]邓敏,梁光华,徐雷,等.促孕散治疗持久黄体不孕奶牛的血清微量元素与激素相关性分析[J].江苏农业科学,2014,42(02):173.
 Deng Min,et al.Correlation analysis of trace elements and hormones in serum of persistent corpus luteum dairy cattle treated by fertility-promoting powder[J].Jiangsu Agricultural Sciences,2014,42(15):173.
[9]尹柏双,王秋竹,付连军,等.隐性乳房炎奶牛乳清中部分酶活性变化[J].江苏农业科学,2016,44(07):276.
 Yin Baishuang,et al.Activity change of some enzyme in whey of dairy cows with recessive mastitis[J].Jiangsu Agricultural Sciences,2016,44(15):276.
[10]王军,彭永帅,霍军,等.郑州市奶牛隐性乳腺炎病原菌的分离与鉴定[J].江苏农业科学,2016,44(09):254.
 Wang Jun,et al.Isolation and identification of subclinical mastitis of dairy cattle in Zhengzhou City[J].Jiangsu Agricultural Sciences,2016,44(15):254.

备注/Memo

备注/Memo:
收稿日期:2019-12-26
基金项目:陕西省重点产业创新链(群)——农业领域项目(编号:2019ZDLNY02-05);国家重点研发计划(编号:2017YFD0701603);中央高校基本科研业务费专项资金(编号:2452019027)。
作者简介:杨奕铭(1999—),男,广东惠州人,主要从事数字图像处理研究。E-mail:y352184741@163.com。
通信作者:宋怀波,博士,副教授,博士生导师,主要从事数字图像处理研究。E-mail:songyangfeifei@163.com。
更新日期/Last Update: 2020-08-05