|本期目录/Table of Contents|

[1]刘振雷,潘家荃,周桦楠,等.甘薯耐冷组学及分子生物学研究进展[J].江苏农业科学,2021,49(24):45-48.
 Liu Zhenlei,et al.Research progress on cold tolerance omics and molecular biology of sweet potato[J].Jiangsu Agricultural Sciences,2021,49(24):45-48.
点击复制

甘薯耐冷组学及分子生物学研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第49卷
期数:
2021年第24期
页码:
45-48
栏目:
专论与综述
出版日期:
2021-12-20

文章信息/Info

Title:
Research progress on cold tolerance omics and molecular biology of sweet potato
作者:
刘振雷1 潘家荃2 周桦楠2 刘冠求2 于涛2
1.辽宁省农业科学院人事教育部,辽宁沈阳 110161; 2.辽宁省农业科学院作物研究所,辽宁沈阳 110161
Author(s):
Liu Zhenleiet al
关键词:
甘薯耐冷组学分子生物学表观危害症状生理生化研究进展
Keywords:
-
分类号:
S531.01
DOI:
-
文献标志码:
A
摘要:
甘薯为喜温短日照作物,起源于热带地区,对低温较敏感。低温冷害对甘薯的产量和品质都会产生显著影响,常造成巨大的经济损失。因此,开展甘薯的耐冷分子生物学研究具有重要的理论和实践价值。总结了低温对甘薯地上部分和地下部分的表观危害症状及对甘薯生理生化方面造成的影响;列举了近年来甘薯耐冷组学和耐冷microRNA方面取得的研究进展,研究结果为甘薯耐冷基因的挖掘及从分子层面揭示甘薯耐冷机理奠定了基础;介绍了目前基因工程在甘薯耐冷研究中的应用,有效加快了耐冷分子化育种进程。同时,文章提出以加强甘薯抗冷性的QTL分子标记定位研究、推进甘薯冷信号分子传导研究、深入开展利用基因工程技术3个方面为未来甘薯耐冷研究的重点方向,以期为甘薯耐冷研究及抗性育种提供理论参考和研究思路。
Abstract:
-

参考文献/References:

[1]陆漱韵,刘庆昌,李惟基. 甘薯育种学[M]. 北京:中国农业出版社,1998:19-29.
[2]Bovell-Benjamin A C. Sweet potato:a review of its past,present,and future role in human nutrition[J]. Advances in Food and Nutrition Research,2007,52:1-59.
[3]FAO. FAOSTAT[EB/OL]. [2021-10-15]. http://www.fao.org/faostat/en/#data/QC. 2019.
[4]Liu Q C. Improvement for agronomically important traits by gene engineering in sweetpotato[J]. Breed Science,2017,67(1):15-26.
[5]Lebot V,Atherton J,Rees A. Section Ⅱ. Sweetpotato:breeding and genetics[M]//Tropical root and tuber crops:cassava,sweetpotato,yams and aroids. Wallingford:CABI,2008:107-126.
[6]Feng J Y,Li M,Zhao S,et al. Analysis of evolution and genetic diversity of sweetpotato and its related different polyploidy wild species I. trifida using RAD-seq[J]. BMC Plant Biology,2018,18(1):181.
[7]Guy C. Molecular responses of plants to cold shock and cold acclimation[J]. Journal of Molecular Microbiology and Biotechnology,1999,1(2):231-242.
[8]Okada Y,Kobayashi A,Tabuchi H,et al. Review of major sweetpotato pests in Japan,with information on resistance breeding programs[J]. Breeding Science,2017,67(1):73-82.
[9]Picha D. Chilling injury,respiration,and sugar changes in sweet potatoes stored at low temperature[J]. Journal of the American Society for Horticultural Science,1987,112:497-502.
[10]Pearce R S. Plant freezing and damage[J]. Annals of Botany,2001,87(4):417-424.
[11]Porter W C,Pharr D M,Kijshman L J,et al. Discoloration of chilled sweetpotato [Ipomoea batatas (L.) Lam.]roots:factors related to cultivar differences[J]. Food Science,1976,41(4):938-941.
[12]Ravi V,Aked J,Balagopalan C. Review on tropical root and tuber crops. Ⅰ. Storage methods and quality changes[J]. Critical Reviews in Food Science and Nutrition,1996,36(7):661-709.
[13]Xie Z Y,Zhou Z L,Li H M,et al. High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam. ) during storage[J]. Genomics,2019,111(5):1006-1017.
[14]Bolger M E,Arsova B,Usadel B. Plant genome andtranscriptome annotations:from misconceptions to simple solutions[J]. Brief in Bioinformatics,2018,19(3):437-449.
[15]马仁罡,孙健英,李宗芸. 基于生物信息学的甘薯基因组学等研究进展[J]. 江苏农业学报,2021,37(2):531-538.
[16]Yang J,Moeinzadeh M H,Kuhl H,et al.Haplotype-re-solved sweet potato genome traces back its hexaploidiza-tion history[J]. Nat Plants,2017,3:696.
[17]Ji C Y,Bian X F,Lee C J,et al. De novo transcriptome sequencing and gene expression profiling of sweet potato leaves during low temperature stress and recovery[J]. Gene,2019,700:23-30.
[18]Ji C Y,Kim H S,Lee C J,et al. Comparative transcriptome profiling of tuberous roots of two sweetpotato lines with contrasting low temperature tolerance during storage[J]. Gene,2020,727:144244
[19]赵晓飞. 甘薯冷诱导转录组测序及转录因子SwDREB1B在抗冷调节中的作用[D]. 杭州:浙江农林大学,2015:17-52.
[20]Yang Y,Guan S,Zhai H,et al. Development and evaluation of a storage root-bearing sweetpotato somatic hybrid between Ipomoea batatas (L.) Lam. and I. triloba L.[ J ]. Plant Cell,Tissue and Organ Culture,2009,99:83-89.
[21]Lee C J,Park S U,Kim S E,et al. Overexpression of IbLfp in sweetpotato enhances the low temperature storage ability of tuberous roots[J]. Plant Physiology and Biochemistry,2021,167:577-585.
[22]赖先军,张义正,古英洪,等. 转昆虫抗冻蛋白基因增强甘薯抗冻能力[J]. 植物学报,2020,55(1):9-20.
[23]Ji C Y,Jin R,Xu Z,et al. Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato[J]. BMC Plant Biology,2017,17(1):139.
[24]Fan W J,Zhang M,Zhang H X,et al. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase[J]. PLoS One,2012,7(5):e37344.
[25]Kim Y H,Kim M D,Park S C,et al. SCOF-1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress[J]. Plant Physiology and Biochemistry,2011,49(12):1436-1441.
[26]Kim Y K,Lim S,Yang K S,et al. Expression of Arabidopsis NDPK2 increases antioxidant enzyme activities and enhances tolerance to multiple environmental stresses in transgenic sweetpotato plants[J]. Molecular Breeding,2009,24(3):233-244.
[27]Chinnusamy V,Zhu J H,Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[28]Li S Y,Liu X A,Zhao L Z,et al. Overexpression of IbSINA5 increases cold tolerance through a CBF SINA-COR mediated module in sweet potato[J]. Phyton-International Journal of Experimental Botany,2021,90(3):761-772.
[29]Jin R,Kim B H,Ji C Y,et al. Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato[J]. Plant Physiology and Biochemistry,2017,118:45-54.
[30]Song X W,Li Y,Cao X F,et al.MicroRNAs and their regu-latory roles in plant-environment interactions[J]. Annual Review of Plant Biology,2019,70:489-525.
[31]Yu J J,Su D,Yang D J,et al. Chilling and heat stress-in-duced physiological changes and MicroRNA-relatedmechanism in sweetpotato (Ipomoea batatas L.)[J]. Frontiers in Plant Science,2020,11:687.
[32]Xie Z Y,Wang A M,Li H M,et al. High throughput deep sequencing reveals the important roles of microRNAs during sweetpotato storage at chilling temperature[J]. Scientific Reports,2017,7(1):16578.
[33]雷雪峰,马爱生,李海翠,等. 8种禾本科牧草低温胁迫的生理响应及抗寒性比较[J]. 江苏农业科学,2019,47(9):218-222.
[34]马猛,闫会,李强. 甘薯分子遗传图谱构建及QTL定位研究进展与展望[J]. 江苏师范大学学报(自然科学版),2020,38(4):41-45.
[35]Solanke A U,Sharma M K,Tyagi A K,et al.Characterization and phylogenetic analysis of environmental stress-responsive SAP gene family encoding A20/AN1 zinc finger proteins in tomato[J]. Molecular Genetics and Genomics,2009,282(2):153-164.
[36]刘辉. 番茄耐寒种质低温胁迫下旳转录组分析及相关基因功能鉴定[D]. 武汉:华中农业大学,2012:12-13.

相似文献/References:

[1]闫会,薛程,李强,等.甘薯田蛴螬防治的现状与展望[J].江苏农业科学,2014,42(12):191.
 Yan Hui,et al.Status and prospects of prevention and control of grubs in sweet potato fields[J].Jiangsu Agricultural Sciences,2014,42(24):191.
[2]边小峰,郭小丁,贾赵东,等.食用甘薯新品种苏薯22号的选育及栽培技术[J].江苏农业科学,2014,42(12):125.
 Bian Xiaofeng,et al.Breeding and cultivation techniques of a new sweet potato cultivar “Sushu No.22”[J].Jiangsu Agricultural Sciences,2014,42(24):125.
[3]王新华,尚赏,郭书亚,等.2BX型玉米/甘薯间作系统优势分析[J].江苏农业科学,2014,42(10):106.
 Wang Xinhua,et al.Superiority analysis of 2BX type corn/sweet potato intercropping system[J].Jiangsu Agricultural Sciences,2014,42(24):106.
[4]刘得明,曹健生,解道斌,等.7个淀粉型甘薯品种的主要经济特性[J].江苏农业科学,2013,41(08):93.
 Liu Deming,et al.Main economic characteristics of seven sweet potato cultivars with high starch content[J].Jiangsu Agricultural Sciences,2013,41(24):93.
[5]文彤明,刘迪.甘薯脱毒苗产业化生产新技术及其产量、品质分析[J].江苏农业科学,2013,41(08):109.
 Wen Tongming,et al.New techniques of virus-free seedlings industrial production and analysis of yield and quality for sweet potato[J].Jiangsu Agricultural Sciences,2013,41(24):109.
[6]朱刘影,张健,刘倩倩,等.核黄素和脱乙酰几丁质对甘薯几丁质酶的诱导作用[J].江苏农业科学,2014,42(08):106.
 Zhu Liuying,et al.Induction of riboflavin and chitosan to chitinase in sweet potato[J].Jiangsu Agricultural Sciences,2014,42(24):106.
[7]李强,谢逸萍,王欣,等.食用紫肉甘薯新品种徐紫薯2号的选育与栽培技术[J].江苏农业科学,2014,42(08):88.
 Li Qiang,et al.Breeding and cultivation techniques of a new edible purple potato cultivar “Xuzishu No.2”[J].Jiangsu Agricultural Sciences,2014,42(24):88.
[8]郭小丁,谢一芝,贾赵东,等.甘薯试管苗及其种薯产量比较试验[J].江苏农业科学,2013,41(09):83.
 Guo Xiaoding,et al.Yield comparison test of plantlets and tubers of sweet potato[J].Jiangsu Agricultural Sciences,2013,41(24):83.
[9]谢一芝,郭小丁,贾赵东,等.甘薯新品种苏薯18号的选育及栽培技术[J].江苏农业科学,2013,41(10):86.
 Xie Yizhi,et al.Breeding and cultivation techniques of new sweet potato cultivar “Sushu No.18”[J].Jiangsu Agricultural Sciences,2013,41(24):86.
[10]谢一芝,郭小丁,贾赵东,等.食用甘薯新品种苏薯20号的选育及栽培技术[J].江苏农业科学,2013,41(11):111.
 Xie Yizhi,et al.Breeding and cultivation techniques of new sweet potato cultivar “Sushu No.20”[J].Jiangsu Agricultural Sciences,2013,41(24):111.

备注/Memo

备注/Memo:
收稿日期:2021-10-10
基金项目:沈阳市专家工作站(编号:20220105);沈阳市薯类产学研联盟(编号:2022-CXY-076);辽宁省农业科学院基本科研业务费计划(编号:2021GR2927)。
作者简介:刘振雷(1979—),男,辽宁沈阳人,硕士,副研究员,从事作物育种研究。E-mail:l15840049311@126.com。
通信作者:于涛,硕士,副研究员,从事作物育种研究。E-mail:18802421111@139.com。
更新日期/Last Update: 2021-12-20