|本期目录/Table of Contents|

[1]杜明华,杨甜,马燕,等.基于NIR高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2022,50(20):48-55.
 Du Minghua,et al.Detection of chlorophyll content in tomato leaves based on NIR hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2022,50(20):48-55.
点击复制

基于NIR高光谱成像技术的番茄叶片叶绿素含量检测(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第50卷
期数:
2022年第20期
页码:
48-55
栏目:
“表型组学”专栏
出版日期:
2022-10-20

文章信息/Info

Title:
Detection of chlorophyll content in tomato leaves based on NIR hyperspectral imaging technology
作者:
杜明华杨甜马燕张捷吴龙国
宁夏大学农学院,宁夏银川 750021
Author(s):
Du Minghuaet al
关键词:
高光谱成像技术番茄叶片叶绿素含量快速诊断偏最小二乘回归模型
Keywords:
-
分类号:
S641.201
DOI:
-
文献标志码:
A
摘要:
利用近红外高光谱成像技术对番茄叶片叶绿素含量的无损检测进行初步探讨。通过高光谱成像系统(900~1 700 nm)采集了192个番茄叶片图像,基于偏最小二乘回归模型(PLSR)对光谱进行样本集划分,对原始光谱与Kubelka-Munk函数曲线及多种光谱预处理的偏最小二乘回归模型进行对比分析,优选出多元散射校正(MSC)为预处理方法。采用5种方法提取特征波长,并根据特征波长建立偏最小二乘回归、多元线性回归(MLR)、主成分回归(PCR)3种模型的叶片叶绿素含量预测模型。结果表明,建立无信息变量消除法(UVE)挑选特征波长的偏最小二乘回归模型最优,其预测集的相关系数(RP)为0.8495,均方根误差(RMSEP)为4.3375。因此,利用近红外高光谱成像技术提取特征波长进行叶绿素含量检测是可行的,同时也为今后番茄品质在线检测提供了理论依据。
Abstract:
-

参考文献/References:

[1]霍建勇.中国番茄产业现状及安全防范[J]. 蔬菜,2016(6):1-4.
[2]Feng L,Zhang M,Bhandari B,et al. A novel method using MOS electronic nose and ELM for predicting postharvest quality of cherry tomato fruit treated with high pressure argon[J]. Computers and Electronics in Agriculture,2018,154:411-419.
[3]袁小康,周广胜,王秋玲,等. 不同灌溉量夏玉米叶绿素含量的高光谱特征及其反演[J]. 生态学报,2021,41(2):543-552.
[4]李艺迪,顾宸瑞,江慧欣,等. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究,2020,40(6):897-905.
[5]卢纯,张亚红,李青. LED不同光质补光对日光温室冬春茬番茄生长及光合特性的影响[J]. 江苏农业科学,2020,48(8):127-134.
[6]符凯娟,冯全,陈佰鸿. 基于图像特征的草莓叶片含水率检测模型[J]. 林业机械与木工设备,2020,48(8):27-34.
[7]Siedliska A,Baranowski P,Zubik M,et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology,2018,139:115-126.
[8]孙红,刘宁,吴莉,等. 高光谱成像的马铃薯叶片含水率分布可视化[J]. 光谱学与光谱分析,2019,39(3):910-916.
[9]Thomas S,Kuska M T,Bohnenkamp D,et al. Benefits of hyperspectral imaging for plant disease detection and plant protection:a technical perspective[J]. Journal of Plant Diseases and Protection,2018,125(1):5-20.
[10]何鸿举,王魏,李波,等. 近红外高光谱快速无接触评估冷鲜猪肉脂质氧化[J]. 食品与机械,2020,36(8):117-122.
[11]闫晓静. 基于光谱和图像信息的进口冰鲜与解冻牛肉品质检测研究[D]. 镇江:江苏大学,2019.
[12]Zhang D Y,Xu Y F,Huang W Q,et al. Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm[J]. Infrared Physics & Technology,2019,98:297-304.
[13]Liu D Y,Guo W C.Identifying CPPU-treated kiwifruits using near-infrared hyperspectral imaging technology[J]. Food Analytical Methods,2017,10(5):1273-1283.
[14]张静宜,陈锦超,傅霞萍,等. 甜瓜尾孢叶斑病的高光谱成像检测[J]. 光谱学与光谱分析,2019,39(10):3184-3188.
[15]Feng L,Zhang M,Adhikari B,et al. Nondestructive detection of postharvest quality of cherry tomatoes using a portable NIR spectrometer and chemometric algorithms[J]. Food Analytical Methods,2019,12(4):914-925.
[16]Sohrabi M M,Ahmadi E,Monavar H M.Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage[J]. Journal of Food Measurement and Characterization,2018,12(2):949-966.
[17]袁瑞瑞,刘贵珊,何建国,等. 可见近红外高光谱成像对灵武长枣定量损伤等级判别[J]. 光谱学与光谱分析,2021,41(4):1182-1187.
[18]邹志勇,吴向伟,陈永明,等. 低温冷冻和机械损伤条件下马铃薯高光谱图像特征响应特性研究[J]. 光谱学与光谱分析,2019,39(11):3571-3578.
[19]吴龙国,何建国,刘贵珊,等. 基于近红外高光谱成像技术的长枣含水量无损检测[J]. 光电子·激光,2014,25(1):135-140.
[20]Polder G,van der Heijden G W A M,Keizer L C P,et al. Calibration and characterisation of imaging spectrographs[J]. Journal of Near Infrared Spectroscopy,2003,11(3):193-210.
[21]孙红,陈香,孙梓淳,等. 基于透射光谱的玉米叶片含水率快速检测仪研究[J]. 农业机械学报,2018,49(3):173-178.
[22]冯愈钦,吴龙国,何建国,等. 基于高光谱成像技术的长枣不同保藏温度的可溶性固形物含量检测方法[J]. 发光学报,2016,37(8):1014-1022.
[23]王松磊,吴龙国,康宁波,等. 基于高光谱图谱融合技术的宁夏滩羊肉嫩度检测方法研究[J]. 光电子·激光,2016,27(9):987-995.
[24]王彩霞,王松磊,贺晓光,等. 高光谱技术融合图像信息的牛肉品种识别方法研究[J]. 光谱学与光谱分析,2020,40(3):911-916.
[25]王松磊,吴龙国,王彩霞,等. 可见近红外高光谱快速诊断番茄叶片含水量及其分布[J]. 光电子·激光,2019,30(9):941-950.
[26]段萌,杨伟才,毛晓敏. 覆膜条件下水分亏缺对春小麦光合特性影响及光响应模型比较研究[J]. 农业机械学报, 2019, 49(1): 219-227.
[27]董金磊,郭文川. 采后猕猴桃可溶性固形物含量的高光谱无损检测[J]. 食品科学,2015,36(16):101-106.

相似文献/References:

[1]周鹏,张小刚,徐彪,等.基于高光谱的南疆红枣病虫害特征谱段选择模式[J].江苏农业科学,2013,41(04):108.
[2]徐凯宏,米雅婷,谷志新.基于GA-BP神经网络的温室番茄病害诊断[J].江苏农业科学,2016,44(04):387.
 Xu Kaihong,et al.Diagnosis of tomato disease in greenhouse based on GA-BP network[J].Jiangsu Agricultural Sciences,2016,44(20):387.
[3]杨杰,马本学,王运祥,等.葡萄可溶性固形物的高光谱无损检测技术[J].江苏农业科学,2016,44(06):401.
 Yang Jie,et al.Non-destructive detection of soluble solids content in grape by hyperspectral imaging techniques[J].Jiangsu Agricultural Sciences,2016,44(20):401.
[4]李伟伟,罗华平,孔维楠.高光谱成像技术结合遗传算法和BP神经网络的南疆骏枣总糖含量建模分析[J].江苏农业科学,2018,46(1):173.
 Li Weiwei,et al.Analysis of total sugar content modeling for Jun jujube in Southern Xinjiang by hyperspectral imaging technology combined with genetic algorithm and BP neural network[J].Jiangsu Agricultural Sciences,2018,46(20):173.
[5]伍恒,李明周,张航,等.基于高光谱技术的哈密瓜果实物候期判别模型[J].江苏农业科学,2019,47(22):258.
 Wu Heng,et al.Discrimination model of Hami melon fruit phenology based on hyperspectral technology[J].Jiangsu Agricultural Sciences,2019,47(20):258.
[6]梁睿杰,陈丰农.基于视觉词袋模型的稻曲病发病程度感知[J].江苏农业科学,2021,49(22):198.
 Liang Ruijie,et al.Perception of rice false smut severity based on visual bag of words model[J].Jiangsu Agricultural Sciences,2021,49(20):198.
[7]马玲,杜明华,孟露,等.基于高光谱成像技术的番茄叶片叶绿素含量检测[J].江苏农业科学,2023,51(11):167.
 Ma Ling,et al.Detection of chlorophyll content in tomato leaves based on hyperspectral imaging technology[J].Jiangsu Agricultural Sciences,2023,51(20):167.
[8]赵坚,鲍浩,张艳.番茄早疫病可见光图像识别模型研究[J].江苏农业科学,2024,52(12):209.
 Zhao Jian,et al.Study on visible light image recognition model of tomato leaf early blight[J].Jiangsu Agricultural Sciences,2024,52(20):209.

备注/Memo

备注/Memo:
收稿日期:2021-09-03
基金项目:第四批“宁夏青年科技人才托举工程”(编号:TJGC2019065);宁夏重点研发计划(编号:2018BBF02012)。
作者简介:杜明华(1998—),女,河南焦作人,硕士研究生,研究方向为设施蔬菜栽培。E-mail:minghua980421@163.com。
通信作者:吴龙国,博士,讲师,硕士生导师,主要从事设施园艺作物营养精准检测方面的研究。E-mail:wlg@nxu.edu.cn。
更新日期/Last Update: 2022-10-20