|本期目录/Table of Contents|

[1]沈悦,沈一,刘永惠,等.花生油脂合成相关酰基转移酶基因的研究进展[J].江苏农业科学,2023,51(5):65-70.
 Shen Yue,et al.Research progress on key acyltransferase genes for lipid biosynthesis in peanut[J].Jiangsu Agricultural Sciences,2023,51(5):65-70.
点击复制

花生油脂合成相关酰基转移酶基因的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第5期
页码:
65-70
栏目:
专论与综述
出版日期:
2023-03-05

文章信息/Info

Title:
Research progress on key acyltransferase genes for lipid biosynthesis in peanut
作者:
沈悦沈一刘永惠梁满张旭尧陈志德
江苏省农业科学院经济作物研究所,江苏南京 210014
Author(s):
Shen Yueet al
关键词:
花生油脂合成途径三酰甘油酰基转移酶
Keywords:
-
分类号:
S718
DOI:
-
文献标志码:
A
摘要:
花生是重要的油料作物和经济作物,我国花生年产量居世界第一,居国内油料作物首位,其总产的50%以上均用于榨油。囿于国内粮油争地矛盾和不断增长的油脂消费需求等因素,提高油料作物含油量对保障我国食用油脂安全具有重要的战略意义。花生种子油脂的主要成分为三酰甘油(TAG),其合成受到多个限速酶基因的协同调控,这些基因的时空表达特性、脂肪酸底物选择性和非生物胁迫响应等机制与油脂积累密切相关,最终影响油籽的产量和品质形成。植物油脂合成是涉及多个亚细胞区室、多条合成途径调控的复杂代谢网络,本文在总结植物油脂区室化合成步骤的基础上,对花生油脂的功能特性以及花生油脂合成途径中相关关键酰基转移酶的作用机制和研究现状进行归纳阐述,并提出存在的问题和建议,为花生油脂性状的精准鉴定和遗传育种提供参考。
Abstract:
-

参考文献/References:

[1]Seijo J G,Lavia G I,Fernández A,et al. Physical mapping of the 5S and 18S-25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae)[J]. American Journal of Botany,2004,91(9):1294-1303.
[2]廖伯寿,殷艳,马霓. 中国油料作物产业发展回顾与展望[J]. 农学学报,2018,8(1):107-112.
[3]Janila P,Nigam S N,Pandey M K,et al. Groundnut improvement:use of genetic and genomic tools[J]. Frontiers in Plant Science,2013,4:23.
[4]Jung S,Swift D,Sengoku E,et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L.). Ⅰ. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases[J]. Molecular & General Genetics,2000,263(5):796-805.
[5]赵春江,李瑾,冯献. 面向2035年智慧农业发展战略研究[J]. 中国工程科学,2021,23(4):1-9.
[6]Food and Agriculture Organization of the United Nations. FAOSTAT Database:2019—2020[EB/OL]. [2022-11-20]. https://www.fao.org/faostat.
[7]Bates P D,Browse J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering[J]. Frontiers in Plant Science,2012,3:147.
[8]Bates P D,Stymne S,Ohlrogge J. Biochemical pathways in seed oil synthesis[J]. Current Opinion in Plant Biology,2013,16(3):358-364.
[9]Xu C C,Shanklin J. Triacylglycerol metabolism,function,and accumulation in plant vegetative tissues[J]. Annual Review of Plant Biology,2016,67(1):179-206.
[10]Bates P D. Understanding the control of acyl flux through the lipid metabolic network of plant oil biosynthesis[J]. Molecular and Cell Biology of Lipids,2016,1861(9):1214-1225.
[11]Chapman K D,Ohlrogge J B. Compartmentation of triacylglycerol accumulation in plants[J]. The Journal of Biological Chemistry,2012,287(4):2288-2294.
[12]Li-Beisson Y,Shorrosh B,Beisson F,et al. Acyl-lipid metabolism[J]. The Arabidopsis Book,2013,11:e0161.
[13]Chen G Q,Woodfield H K,Pan X,et al. Acyl-trafficking during plant oil accumulation[J]. Lipids,2015,50(11):1057-1068.
[14]Li N N,Gügel I L,Giavalisco P,et al. FAX1,a novel membrane protein mediating plastid fatty acid export[J]. PLoS Biology,2015,13(2):e1002053.
[15]Lu C F,Xin Z G,Ren Z H,et al. An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2009,106(44):18837-18842.
[16]Lee J,Welti R,Schapaugh W T,et al. Phospholipid and triacylglycerol profiles modified by PLD suppression in soybean seed[J]. Plant Biotechnology Journal,2011,9(3):359-372.
[17]Stymne S,Stobart A K. Evidence for the reversibility of the acyl-CoA:lysophosphatidylcholine acyltransferase in microsomal preparations from developing safflower (Carthamus tinctorius L.) cotyledons and ratliver[J]. Biochemical Journal,1984,223(2):305-314.
[18]禹山林. 中国花生遗传育种学[M]. 上海:上海科学技术出版社,2011:29-33.
[19]廖伯寿. 中国花生油脂产业竞争力浅析[J]. 花生学报,2003,32(增刊1):11-15.
[20]姜慧芳,任小平,王圣玉,等. 野生花生高油基因资源的发掘与鉴定[J]. 中国油料作物学报,2010,32(1):30-34.
[21]万勇善,谭忠,范晖,等. 花生脂肪酸组分的遗传效应研究[J]. 中国油料作物学报,2002,24(1):27-29.
[22]姜慧芳,段乃雄. 花生油脂品质及含油量、油酸和亚油酸含量间的相关分析[J]. 花生科技,1993(2):5-6.
[23]Nepote V,Olmedo R H,Mestrallet M G,et al. A study of the relationships among consumer acceptance,oxidation chemical indicators,and sensory attributes in high-oleic and normal peanuts[J]. Journal of Food Science,2009,74(1):1-8.
[24]Chen X,Snyder C L,Truksa M,et al. sn-Glycerol-3-phosphate acyltransferases in plants[J]. Plant Signaling & Behavior,2011,6(11):1695-1699.
[25]Yang W L,Simpson J P,Li-Beisson Y,et al. A land-plant-specific glycerol-3-phosphate acyltransferase family in Arabidopsis:substrate specificity,sn-2 preference,and evolution[J]. Plant Physiology,2012,160(2):638-652.
[26]Singer S D,Chen G Q,Mietkiewska E,et al. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids[J]. Journal of Experimental Botany,2016,67(15):4627-4638.
[27]Payá-Milans M,Venegas-Calerón M,Salas J J,et al. Cloning,heterologous expression and biochemical characterization of plastidial sn- glycerol-3-phosphate acyltransferase from Helianthus annuus[J]. Phytochemistry,2015,111:27-36.
[28]Sun S K,Yang N N,Chen L J,et al. Characterization of LpGPAT gene in Lilium pensylvanicum and response to cold stress[J]. BioMed Research International,2015,2015:792819.
[29]Chi X,Yang Q,Pan L,et al. Isolation and expression analysis of glycerol-3-phosphate acyltransferase genes from peanuts (Arachis hypogaea L.)[J]. Grasasy Aceites,2015,66(3):e093.
[30]郝翠翠,梁成伟,石蕾,等. 花生甘油-3-磷酸酰基转移酶(GPAT)基因的克隆及表达分析[J]. 花生学报,2018,47(1):1-10.
[31]Lv Y Y,Zhang X R,Luo L,et al. Characterization of glycerol-3-phosphate acyltransferase 9 (AhGPAT9) genes,their allelic polymorphism and association with oil content in peanut (Arachis hypogaea L.)[J]. Scientific Reports,2020,10(1):14648.
[32]Shockey J,Regmi A,Cotton K,et al. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in triacylglycerol biosynthesis[J]. Plant Physiology,2016,170(1):163-179.
[33]Krbes A P,Kulcheski F R,Margis R,et al. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family[J]. Molecular Phylogenetics and Evolution,2016,96:55-69.
[34]Kim H U,Huang A H C. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis[J]. Plant Physiology,2004,134(3):1206-1216.
[35]Kim H U,Li Y H,Huang A H C. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase,LPAT2,is essential for female but not male gametophyte development in Arabidopsis[J]. The Plant Cell,2005,17(4):1073-1089.
[36]Chi X Y,Dong F,Yang Q L,et al. Expression and characterization of lysophosphatidyl acyltransferase genes from peanut (Arachis hypogaea L.)[J]. Research on Crops,2014,15(1):141-153.
[37]Chen S L,Huang J Q,Lei Y,et al. Cloning and expression analysis of lysophosphatidic acid acyltransferase (LPAT) encoding gene in peanut[J]. Acta Agronomica Sinica,2012,38(2):245-255.
[38]Chen S L,Lei Y,Xu X,et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds[J]. PLoS One,2017,10(8):e0136170.
[39]Chen S L,Huang J Q,Lei Y,et al. Identification and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea[J]. Journal of Biosciences,2012,37(6):1029-1039.
[40]Jako C,Kumar A,Wei Y,et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiology,2001,126(2):861-874.
[41]Zhang M,Fan J L,Taylor D C,et al. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development[J]. The Plant cell,2009,21(12):3885-3901.
[42]Tan W J,Yang Y C,Zhou Y,et al. Diacylglycerol acyltransferase and diacylglycerol kinase modulate triacylglycerol and phosphatidic acid production in the plant response to freezing stress[J]. Plant Physiology,2018,177(3):1303-1318.
[43]Liu Q,Siloto R M P,Lehner R,et al. Acyl-CoA:diacylglycerol acyltransferase:molecular biology,biochemistry and biotechnology[J]. Progress in Lipid Research,2012,51(4):350-377.
[44]Jin Y H,Yuan Y J,Gao L C,et al. Characterization and functional analysis of a type 2 diacylglycerol acyltransferase (DGAT2) gene from oil palm (Elaeis guineensis Jacq.) mesocarp in Saccharomyces cerevisiae and transgenic Arabidopsis thaliana[J]. Frontiers in Plant Science,2017,8:1791.
[45]Zheng Y S,Jin Y H,Yuan Y J,et al. Identification and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from the endosperm of coconut (Cocos nucifera L.)[J]. Gene,2019,702:75-82.
[46]Zheng L,Shockey J,Guo F,et al. Discovery of a new mechanism for regulation of plant triacylglycerol metabolism:the peanut diacylglycerol acyltransferase-1 gene family transcriptome is highly enriched in alternative splicing variants[J]. Journal of Plant Physiology,2017,219:62-70.
[47]Zheng L,Shockey J,Bian F,et al. Variant amino acid residues alter the enzyme activity of peanut type 2 diacylglycerol acyltransferases[J]. Frontiers in Plant Science,2017,8:1751.
[48]Saha S,Enugutti B,Rajakumari S,et al. Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase[J]. Plant Physiology,2006,141(4):1533-1543.
[49]Chi X Y,Hu R B,Zhang X W,et al. Cloning and functional analysis of three diacylglycerol acyltransferase genes from peanut (Arachis hypogaea L.)[J]. PLoS One,2017,9(9):e105834.
[50]Dahlqvist A,Stahl U,Lenman M,et al. Phospholipid:diacylglycerol acyltransferase:an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants[J]. Proceedings of the National Academy of Sciences of the United States of America,2000,97(12):6487-6492.
[51]Stahl U,Carlsson A S,Lenman M,et al. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis[J]. Plant Physiology,2004,135(3):1324-1335.
[52]Mhaske V,Beldjilali K,Ohlrogge J,et al. Isolation and characterization of an Arabidopsis thaliana knockout line for phospholipid:diacylglycerol transacylase gene (At5g13640)[J]. Plant Physiology and Biochemistry,2005,43(4):413-417.
[53]张程,董帅飞,朱艺,等. 向日葵PDAT基因家族鉴定及其对油脂积累和非生物胁迫的响应[J]. 植物生理学报,2022,58(5):844-856.
[54]谭太龙,冯韬,罗海燕,等. 甘蓝型油菜磷脂二酰甘油酰基转移酶(BnPDAT1)表达特性研究[J]. 华北农学报,2019,34(1):12-18.
[55]田海莹,单雷,李新国,等. 花生PDAT基因家族的全基因组生物信息学分析[J]. 花生学报,2018,47(3):1-7.
[56]徐赫,潘丽娟,陈娜,等. 磷脂二酰甘油酰基转移酶(PDAT)基因的克隆与表达分析[J]. 花生学报,2018,47(4):33-40.

相似文献/References:

[1]王有宁,赵丽艳,章爱群,等.花生高光谱叶片营养诊断研究[J].江苏农业科学,2014,42(12):129.
 Wang Youning,et al.Study on nutrition diagnosis of peanut leaves based on hyperspectral data[J].Jiangsu Agricultural Sciences,2014,42(5):129.
[2]刘永惠,沈一,陈志德.花生种质苗期抗旱性鉴定与评价[J].江苏农业科学,2014,42(11):108.
 Liu Yonghui,et al(08).Identification and evaluation of drought resistance of peanut germplasm during seeding stage[J].Jiangsu Agricultural Sciences,2014,42(5):108.
[3]张俊,刘娟,汤丰收,等.不同花生品种抗旱生理特性的差异[J].江苏农业科学,2015,43(12):114.
 Zhang Jun,et al.Difference of drought-resistant physiological characteristics of different peanut varieties[J].Jiangsu Agricultural Sciences,2015,43(5):114.
[4]刘一佳,任学敏,朱雅,等.施氮水平对花生冠层温度和产量性状的影响及其相互关系[J].江苏农业科学,2015,43(12):101.
 Liu Yijia,et al.Effects of nitrogen rate on canopy temperature and yield characteristics of peanut and their relationship[J].Jiangsu Agricultural Sciences,2015,43(5):101.
[5]杨洁,张勇,杨萍,等.山东省花生产业发展现状分析[J].江苏农业科学,2014,42(09):433.
 Yang Jie,et al.Analysis of industrial development of peanuts in Shandong Province[J].Jiangsu Agricultural Sciences,2014,42(5):433.
[6]张永平,乔永旭,赵绪明,等.蚯蚓粪作基肥对夏播花生生长与产量的影响[J].江苏农业科学,2014,42(08):97.
 Zhang Yongping,et al.Effects of vermicompost as basal fertilizer on growth and yield of summer-sowing peanut[J].Jiangsu Agricultural Sciences,2014,42(5):97.
[7]徐静,张新友,汤丰收,等.花生种间杂交胚胎发育初探[J].江苏农业科学,2013,41(09):73.
 Xu Jing,et al.Preliminary study on embryo development in interspecific hybrid of peanut[J].Jiangsu Agricultural Sciences,2013,41(5):73.
[8]王晓军,孙东雷,王宗标,等.江苏省花生地方品种农艺性状分析[J].江苏农业科学,2013,41(09):77.
 Wang Xiaojun,et al.nomic traits analysis of peanut landraces in Jiangsu Province[J].Jiangsu Agricultural Sciences,2013,41(5):77.
[9]崔少雄,王雪,孙志梅,等.不同产量水平花生品种的生长发育特性比较[J].江苏农业科学,2016,44(03):107.
 Cui ShaoXiong,et al.Comparison of growth and development characteristics of different peanut varieties based on yield levels[J].Jiangsu Agricultural Sciences,2016,44(5):107.
[10]景令怡,朱珏,乔辉.农村“空壳化”对花生种植户生产效率的影响机制研究[J].江苏农业科学,2016,44(03):480.
 Jing Lingyi,et al.Study on effect of phenomenon of “empty village” on productivity and efficiency of peanut growers[J].Jiangsu Agricultural Sciences,2016,44(5):480.

备注/Memo

备注/Memo:
收稿日期:2022-12-20
基金项目:国家自然科学基金(编号:31701461);江苏省农业科技自主创新资金[编号:CX(20)3121];江苏省种业振兴“揭榜挂帅”项目[编号:JBGS(2021)062];国家现代农业产业技术体系建设专项(编号:CARS-13)。
作者简介:沈悦(1986—),女,江苏宜兴人,博士,助理研究员,主要从事花生遗传育种与分子生物学研究。E-mail:syjaas@163.com。
通信作者:陈志德,博士,研究员,主要从事花生资源与遗传育种研究。E-mail:chen701865@aliyun.com。
更新日期/Last Update: 2023-03-05