|本期目录/Table of Contents|

[1]田敏,施自明,蔡艳飞,等.纳米材料技术在香石竹切花保鲜中的应用研究进展[J].江苏农业科学,2023,51(19):10-17.
 Tian Min,et al.Research progress on application of nanomaterial technology in preservation of cut flowers of carnation (Dianthus caryophyllus L.)[J].Jiangsu Agricultural Sciences,2023,51(19):10-17.
点击复制

纳米材料技术在香石竹切花保鲜中的应用研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第51卷
期数:
2023年第19期
页码:
10-17
栏目:
专论与综述
出版日期:
2023-10-05

文章信息/Info

Title:
Research progress on application of nanomaterial technology in preservation of cut flowers of carnation (Dianthus caryophyllus L.)
作者:
田敏1施自明1蔡艳飞1孙丹2赵培飞1
1.云南省农业科学院花卉研究所/云南省花卉育种重点实验室/国家观赏园艺工程技术研究中心,云南昆明 650200; 2.昆明爱农农业科技有限公司,云南昆明 650500
Author(s):
Tian Minet al
关键词:
纳米材料香石竹保鲜金属纳米碳纳米环糊精纳米海绵氢纳米气泡水
Keywords:
-
分类号:
S681.509+.3
DOI:
-
文献标志码:
A
摘要:
香石竹(Dianthus caryophyllus L.)是世界四大切花之一,瓶插寿命是决定其品质和消费者喜好的重要因素;且香石竹为典型的乙烯敏感型切花,贮运过程中损耗率高。因此,各种化学和物理的采后处理方法被用于控制香石竹切花的采后处理,但这些方法具有生产成本高、保质期短、残留物会造成环境污染等局限性。纳米材料具有较高热稳定性、较强表面活性和催化性能等优点,与纳米材料技术相关的延长保质期策略有可能弥补传统保鲜方法的缺点,在切花保鲜领域具有广阔应用前景。本文从纳米材料的种类、浓度、试验材料的基因型、处理方式等方面综述了纳米材料技术对香石竹切花保鲜效果的影响因素,并分别综述了金属纳米颗粒、碳纳米材料、1-甲基环丙烯/NS复合物、β-环糊精纳米海绵-1-MCP复合物及氢纳米气泡水等纳米材料的保鲜机制,旨在为香石竹采后处理中纳米保鲜产品的开发和应用提供参考。
Abstract:
-

参考文献/References:

[1]蒋亚莲,陆琳,瞿素萍,等. 不同浓度6-BA和B9对多头香石竹切花保鲜效果的影响[J]. 山西农业科学,2020,48(4):644-648.
[2]le Masson B,Nowak J. Cut-flower life of dry transported carnations as influenced by different silver form pre-treatments[J]. Scientia Horticulturae,1981,15(4):383-390.
[3]van Doorn W G.Water relations of cut flowers[M]//Horticultural reviews.Oxford,UK:John Wiley & Sons,Inc.,2010:1-85.
[4]Petridou M,Voyiatzi C,Voyiatzis D.Aspirin R,methanol and some antibacterial compounds prolong the vase life of cut carnations[J]. Advances in Horticultural Science,1999,13(4):161-164.
[5]张英慧,崔志新,钟希琼,等. 溴代十六烷基吡啶对香石竹切花的保鲜效应[J]. 植物生理学通讯,2006,42(4):661-664.
[6]刘季平,何生根,吕培涛,等. 二氯异氰脲酸钠处理对香石竹切花的保鲜效应[J]. 园艺学报,2009,36(1):121-126.
[7]Newman J P,Dodge L L,Reid M S. Evaluation of ethylene inhibitors for postharvest treatment of Gypsophila paniculata L.[J]. HortTechnology,1998,8(1):58-63.
[8]高俊平. 观赏植物采后生理与技术[M]. 北京:中国农业大学出版社,2002.
[9]Ichimura K,Yoshioka S,Yumoto-Shimizu H. Effects of silver thiosulfate complex (STS),sucrose and combined pulse treatments on the vase life of cut snapdragon flowers[J]. Environment Control in Biology,2008,46(3):155-162.
[10]Cameron A C,Reid M S. 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient[J]. Postharvest Biology and Technology,2001,22(2):169-177.
[11]Garde-Cerdán T,Souza-da Costa B,Rubio-Bretón P,et al. Nanotechnology:recent advances in viticulture and enology[J]. Journal of the Science of Food and Agriculture,2021,101(15):6156-6166.
[12]Zhang B T,Zheng X X,Li H F,et al. Application of carbon-based nanomaterials in sample preparation:a review[J]. Analytica Chimica Acta,2013,784:1-17.
[13]Raskar S,Laware S. Effect of zinc oxide nanoparticles on cytology and seed germination in onion[J]. Int J Curr Microbiol App Sci,2014,3:467-473.
[14]Abou Hammad A B,Abd El-Aziz M E,Hasanin M S,et al. A novel electromagnetic biodegradable nanocomposite based on cellulose,polyaniline,and cobalt ferrite nanoparticles[J]. Carbohydrate Polymers,2019,216:54-62.
[15]Salama D M,Abd El-Aziz M E,Rizk F A,et al. Applications of nanotechnology on vegetable crops[J]. Chemosphere,2021,266:129026.
[16]Usman M,Farooq M,Wakeel A,et al. Nanotechnology in agriculture:current status,challenges and future opportunities[J]. Science of the Total Environment,2020,721:137778.
[17]Duhan S,Bhan C,Chawla S,et al. Role of nanotechnology in post harvest management of horticultural crops[J]. International Journal of Processing and Post Harvest Technology,2016,7(1):134-140.
[18]Mousavi S,Rezaei M. Nanotechnology in agriculture and food production[J]. Chain Reaction,2011,100:17-19.
[19]Sarmast M K,Salehi H.Silver nanoparticles:an influential element in plant nanobiotechnology[J]. Molecular Biotechnology,2016,58(7):441-449.
[20]王红娟,杨宏顺,陈复生,等. 纳米技术在采后果蔬保鲜中的研究进展[J]. 食品科技,2011,36(6):71-75.
[21]Solgi M,Kafi M,Taghavi T S,et al. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of Gerbera (Gerbera jamesonii cv.‘Dune’) flowers[J]. Postharvest Biology and Technology,2009,53(3):155-158.
[22]Lü P T,Cao J P,He S G,et al. Nano-silver pulse treatments improve water relations of cut rose cv.Movie Star flowers[J]. Postharvest Biology and Technology,2010,57(3):196-202.
[23]Nasrollahzadeh M,Sajjadi M,Dadashi J,et al. Pd-based nanoparticles:plant-assisted biosynthesis,characterization,mechanism,stability,catalytic and antimicrobial activities[J]. Advances in Colloid and Interface Science,2020,276:102-103.
[24]Kaur R,Chandra J,Keshavkant S.Nanotechnology:an efficient approach for rejuvenation of aged seeds[J]. Physiology and Molecular Biology of Plants,2021,27(2):399-415.
[25]Liu J P,Zhang Z Q,Li H M,et al. Alleviation of effects of exogenous ethylene on cut ‘Master’ carnation flowers with nano-silver and silver thiosulfate[J]. Postharvest Biology and Technology,2018,143:86-91.
[26]Basir Y,Zarei H,Mashayekhi K. Effect of nano-silver treatments on vase life of cut flowers of carnation (Dianthus caryophyllus cv. ‘White Liberty’)[J]. Journal of Advanced Laboratory Research in Biology,2011,19:40-42.
[27]Lin X H,Li H M,Lin S Q,et al. Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose[J]. The Journal of Horticultural Science and Biotechnology,2019,94(4):513-521.
[28]Roshani T,Ahmadi N,Karimzadeh G. Effects of silver nano particles and 1-MCP on postharvest characteristic and activities of enzymes involved in cut carnation flower senescence[J]. Advances in Applied Science Research,2016,2:1-10.
[29]吴雨衡,黄祥富,何生根,等. 不同纳米铜处理对香石竹切花‘小桃红’的保鲜效果[J]. 仲恺农业工程学院学报,2022,35(1):7-12.
[30]Li L N,Yin Q L,Zhang T,et al. Hydrogen nanobubble water delays petal senescence and prolongs the vase life of cut carnation (Dianthus caryophyllus L.) flowers[J]. Plants,2021,10(8):1662.
[31]Seglie L,Martina K,Devecchi M,et al. β-Cyclodextrin-based nanosponges as carriers for 1-MCP in extending the postharvest longevity of carnation cut flowers:an evaluation of different degrees of cross-linking[J]. Plant Growth Regulation,2011,65(3):505-511.
[32]Zhang D,Chen X,Sheng J,et al. The effect of carbon nanomaterials on senescence of cut flowers in carnation (Dianthus caryophyllus L.)[J]. Horticultural Science and Technology,2021,39(3):356-367.
[33]Masoumeh A M,Sadegh M F,Abdolhossein R N,et al. Carbon nanotubes in the holding solution stimulate flower opening and prolong vase life in carnation[J]. Chemical and Biological Technologies in Agriculture,2022,9(1):261-264.
[34]Poonia M,Manjuladevi V,Gupta R K. Ultrathin films of functionalised single-walled carbon nanotubes:a potential bio-sensing platform[J]. Liquid Crystals,2020,47(8):1204-1213.
[35]Lin L,Peng H L,Liu Z F.Synthesis challenges for graphene industry[J]. Nature Materials,2019,18(6):520-524.
[36]Dresselhaus M S,Dresselhaus G,Jorio A.Unusual properties and structure of carbon nanotubes[J]. Annual Review of Materials Research,2004,34:247-278.
[37]Gao C D,Feng P,Peng S P,et al. Carbon nanotube,graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair[J]. Acta Biomaterialia,2017,61:1-20.
[38]Lee S H,Jun B H.Silver nanoparticles:synthesis and application for nanomedicine[J]. International Journal of Molecular Sciences,2019,20(4):865.
[39]Markets M.Metal Nanoparticles Market by metal (Platinum,Gold,Silver,Iron,Titanium,Copper,Nickel),End-use industry (Pharmaceutical & healthcare,Electrical & electronics,Catalyst,Personal care & cosmetics),and Region-Global Forecast to 2022[J]. Mark Res Rep,2018,14:448-492.
[40]Ahmeda A,Zangeneh A,Zangeneh M M.Characterization and anti-acute T cell leukemia properties of silver nanoparticles synthesized by a green approach for bioremediation applications:introducing a new chemotherapeutic drug for clinical trial studies[J]. Applied Organometallic Chemistry,2020,34(3):53-74.
[41]Shepard Z J,Lux E M,Oyanedel-Craver V A.Performance of silver nanoparticle-impregnated ovoid ceramic water filters[J]. Environmental Science:Nano,2020,7(6):1772-1780.
[42]Keshari A K,Srivastava R,Yadav S. Synergistic activity of green silver nanoparticles with antibiotics[J]. Nanomed Res J,2020,5(1):44-54.
[43]刘季平,张昭其,李红梅,等. 纳米银处理减轻香石竹切花细菌性茎堵塞的研究[J]. 园艺学报,2014,41(1):131-138.
[44]Naing A H,Win N M,Han J S,et al. Role of nano-silver and the bacterial strain Enterobacter cloacae in increasing vase life of cut carnation ‘omea’[J]. Frontiers in Plant Science,2017,8:1590.
[45]Wang S,Liu Y S,Lyu T,et al. Aquatic macrophytes in morphological and physiological responses to the nanobubble technology application for water restoration[J]. ACS ES&T Water,2021,1(2):376-387.
[46]Svetovoy V B.Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles[J]. Current Opinion in Colloid & Interface Science,2021,52:101423.
[47]Liu S,Oshita S,Thuyet D Q,et al. Antioxidant activity of hydrogen nanobubbles in water with different reactive oxygen species both in vivo and in vitro[J]. Langmuir,2018,34(39):11878-11885.
[48]Lyu T,Wu S B,Mortimer R J G,et al. Nanobubble technology in environmental engineering:revolutionization potential and challenges[J]. Environmental Science & Technology,2019,53(13):7175-7176.
[49]蔡敏,杜红梅.富氢水预处理对香石竹切花瓶插寿命的影响[J]. 上海交通大学学报(农业科学版),2015,33(6):41-45.
[50]Kato S,Matsuoka D,Miwa N.Antioxidant activities of nano-bubble hydrogen-dissolved water assessed by ESR and 2,2′-bipyridyl methods[J]. Materials Science and Engineering:C,2015,53:7-10.
[51]Mattea F,Vedelago J,Malano F,et al. Silver nanoparticles in X-ray biomedical applications[J]. Radiation Physics and Chemistry,2017,130:442-450.
[52]王书玉,黎蓝,赖凌峰,等. 纳米铜加蔗糖处理对非洲菊切花的保鲜作用[J]. 中国农学通报,2021,37(4):62-67.
[53]Rashidiani N,Nazari F,Javadi T,et al. Copper nanoparticles (CuNPs) increase the vase life of cut carnation and chrysanthemum flowers:antimicrobial ability and morphophysiological improvements[J]. Ornamental Horticulture,2020,26(2):225-235.
[54]Naing A H,Soe M T,Kyu S Y,et al. Nano-silver controls transcriptional regulation of ethylene-and senescence-associated genes during senescence in cut carnations[J]. Scientia Horticulturae,2021,287:110280.
[55]刘季平,谢立贤,李红梅,等. 不同纳米银处理方式对香石竹切花瓶插寿命的影响[J]. 仲恺农业工程学院学报,2012,25(4):1-4.
[56]Trotta F,Dianzani C,Caldera F,et al. The application of nanosponges to cancer drug delivery[J]. Expert Opinion on Drug Delivery,2014,11(6):931-941.
[57]dos Passos Menezes P,de Araújo Andrade T,Frank L A,et al. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals[J]. International Journal of Pharmaceutics,2019,559:312-328.
[58]Seglie L,Martina K,Devecchi M,et al. The effects of 1-MCP in cyclodextrin-based nanosponges to improve the vase life of Dianthus caryophyllus cut flowers[J]. Postharvest Biology and Technology,2011,59(2):200-205.
[59]Patel D K,Kim H B,Dutta S D,et al. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications[J]. Materials,2020,13(7):1679.
[60]Verma S K,Das A K,Gantait S,et al. Applications of carbon nanomaterials in the plant system:a perspective view on the pros and cons[J]. Science of the Total Environment,2019,667:485-499.
[61]Hassan F A S,Ali E F,El-Deeb B.Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles[J]. Scientia Horticulturae,2014,179:340-348.
[62]Li H B,Li H M,Liu J P,et al. Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes[J]. Postharvest Biology and Technology,2017,123:102-111.
[63]Park D Y,Naing A H,Ai T N,et al. Synergistic effect of nano-sliver with sucrose on extending vase life of the carnation cv.edun[J]. Frontiers in Plant Science,2017,8:1601.
[64]Lok C N,Ho C M,Chen R,et al. Silver nanoparticles:partial oxidation and antibacterial activities[J]. JBIC Journal of Biological Inorganic Chemistry,2007,12(4):527-534.
[65]Park S H,Oh S G,Mun J Y,et al. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome[J]. Colloids and Surfaces B:Biointerfaces,2005,44(2/3):117-122.
[66]Russell A,Hugo W. Antimicrobial activity and action of silver[J]. Prog MedChem,1994,31:351-371.
[67]Raffi M,Mehrwan S,Bhatti T M,et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli[J]. Annals of Microbiology,2010,60(1):75-80.
[68]Avery S V,Howlett N G,Radice S. Copper toxicity towards Saccharomyces cerevisiae:dependence on plasma membrane fatty acid composition[J]. Applied and Environmental Microbiology,1996,62(11):3960-3966.
[69]Thomas Webster T J.Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus[J]. International Journal of Nanomedicine,2010:277.
[70]Sun T T,Yan Y W,Zhao Y,et al. Copper oxide nanoparticles induce autophagic cell death in A549 cells[J]. PLoS One,2012,7(8):e43442.
[71]Sisler E C,Serek M.Inhibitors of ethylene responses in plants at the receptor level:recent developments[J]. Physiologia Plantarum,1997,100(3):577-582.
[72]Trotta F,Cavalli R,Martina K,et al. Cyclodextrin nanosponges as effective gas carriers[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2011,71(1):189-194.
[73]Devecchi M,Trotta F,Seglie L,et al. Effects of anti-ethylene compounds included in nanosponges in improving the postharvest longevity of carnation (Dianthus caryophyllus) and buttercup (Ranunculus asiaticus) cut flowers[J]. Acta Horticulturae,2009(847):237-244.
[74]Apelbaum A,Sisler E C,Feng X Q,et al. Assessment of the potency of 1-substituted cyclopropenes to counteract ethylene-induced processes in plants[J]. Plant Growth Regulation,2008,55(2):101-113.
[75]Blankenship S M,Dole J M.1-methylcyclopropene:a review[J]. Postharvest Biology and Technology,2003,28(1):1-25.
[76]Kebenei Z,Sisler E C,Winkelmann T,et al. Efficacy of new inhibitors of ethylene perception in improvement of display life of kalancho (Kalancho blossfeldiana Poelln.) flowers[J]. Postharvest Biology and Technology,2003,30(2):169-176.
[77]Feng X Q,Apelbaum A,Sisler E C,et al. Control of ethylene activity in various plant systems by structural analogues of 1-methylcyclopropene[J]. Plant Growth Regulation,2004,42(1):29-38.
[78]Serek M,Sisler E C,Frello S,et al. Postharvest technologies for extending the shelf life of ornamental crops[J]. International Journal of Postharvest Technology and Innovation,2006,1(1):69.
[79]Li D,Ma M.Nanoporous polymers:new nanosponge absorbent media[J]. Filtration & Separation,1999,36(10):26-28.
[80]Elad Y. Physiological factors involved in susceptibility of plants to pathogens and possibilities for disease control-the Botrytis cinerea example[M]. London:Modern Fungicides and Antifungal Compounds,1995:217-233.
[81]Elad Y,Yunis H,Volpin H.Effect of nutrition on susceptibility of cucumber,eggplant,and pepper crops to Botrytis cinerea[J]. Canadian Journal of Botany,1993,71(4):602-608.
[82]Elad Y.Responses of plants to infection by Botrytis cinerea and novel means involved in reducing their susceptibility to infection[J]. Biological Reviews,2007,72(3):381-422.
[83]孙乐. 体相纳米气泡的性质与应用研究[M]. 北京:北京化工大学,2021:88-97.
[84]Temesgen T,Bui T T,Han M,et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques:a review[J]. Advances in Colloid and Interface Science,2017,246:40-51.
[85]Azevedo A,Etchepare R,Calgaroto S,et al. Aqueous dispersions of nanobubbles:generation,properties and features[J]. Minerals Engineering,2016,94:29-37.
[86]Fan Y J,Lei Z F,Guo Z T,et al. Enhanced solubilization of solid organics and methane production by anaerobic digestion of swine manure under nano-bubble water addition[J]. Bioresour Technol,2020,299:122-125.
[86]Fan Y J,Lei Z F,Guo Z T,et al. Enhanced solubilization of solid organics and methane production by anaerobic digestion of swine manure under nano-bubble water addition[J]. Bioresource Technology,2020,299:122-125.
[87]van Doorn W G,Woltering E J.Physiology and molecular biology of petal senescence[J]. Journal of Experimental Botany,2008,59(3):453-480.
[88]Naing A H,Lee K,Arun M,et al. Characterization of the role of sodium nitroprusside (SNP) involved in long vase life of different carnation cultivars[J]. BMC Plant Biology,2017,17(1):1-12.
[89]Rabiza-S'wider J,Skutnik E,Jdrzejuk A,et al. Nanosilver and sucrose delay the senescence of cut snapdragon flowers[J]. Postharvest Biology and Technology,2020,165:111-125.

相似文献/References:

[1]李进昆,桂敏,张玲敏,等.香石竹采穗母本无土栽培基质和营养液试验研究[J].江苏农业科学,2013,41(05):130.
 Li Jinkun,et al.Study on substrates and nutrient solutions of carnation cutting mother plant soilless culture[J].Jiangsu Agricultural Sciences,2013,41(19):130.
[2]任 敏,朱红霞,张家洋,等.无银保鲜剂对香石竹的保鲜效应[J].江苏农业科学,2015,43(02):271.
 Ren Min,et al.Preservation effects of three different silver-free preservatives on carnation[J].Jiangsu Agricultural Sciences,2015,43(19):271.
[3]张宝琼,姬语潞,李涵,等.有机微量元素生长肥浓度对香石竹营养生长的影响[J].江苏农业科学,2020,48(20):146.
 Zhang Baoqiong,et al.Effect of organic trace element growth fertilizer concentration on vegetative growth of carnation[J].Jiangsu Agricultural Sciences,2020,48(19):146.
[4]王淼,周杰,陈鸽,等.纳米生物农药的设计及控缓释研究进展[J].江苏农业科学,2023,51(17):9.
 Wang Miao,et al.Research progress on design and controlled release of nano bio-pesticides[JY。]Wang Miao,et al(9)[J].Jiangsu Agricultural Sciences,2023,51(19):9.
[5]苏瑞琴,张妍,崔同霞.砷胁迫下不同纳米颗粒对水稻养分吸收、生理特性及砷累积的影响[J].江苏农业科学,2023,51(17):67.
 Su Ruiqin,et al.Effects of different nanoparticles on nutrient absorption,physiological characteristics and arsenic accumulation of rice under arsenic stress[JY。]Su Ruiqin,et al(67)[J].Jiangsu Agricultural Sciences,2023,51(19):67.
[6]孙仲旭,张汉超,陈龙,等.类水滑石纳米载体负载DNA质粒构建及植物基因递送研究[J].江苏农业科学,2023,51(20):49.
 Sun Zhongxu,et al.Construction of DNA plasmid loaded on hydrotalc-like nanocarriers and plant gene delivery[J].Jiangsu Agricultural Sciences,2023,51(19):49.

备注/Memo

备注/Memo:
收稿日期:2022-12-06
基金项目:云南省财政厅绿色食品牌打造科技支撑行动(花卉)专项经费(编号:530000210000000013742);国家大宗蔬菜产业技术体系建设专项(编号:CARS-23-G56);昆明市呈贡区人才工作站(花卉专家工作站)项目;昆明市科学技术局国际(对外)科技合作基地(编号:GHJD-2021024)。
作者简介:田敏(1985—),女,云南开远人,硕士,副研究员,主要从事花卉开发及相关技术研究。E-mail:tminfl@yeah.net。
通信作者:赵培飞,硕士,研究员,主要从事花卉开发及推广研究。E-mail:zhaopeifei@163.com。
更新日期/Last Update: 2023-10-05