[1]徐世成,王鹤冰,冯俊杰,等. 黄瓜霜霉病及寄主抗性机制研究进展[J]. 生物工程学报,2022,38(5):1724-1737.
[2]徐静,苗腾,周云成,等. 基于高光谱成像技术的玉米弯孢叶斑病的早期检测[J]. 沈阳农业大学学报,2020,51(2):225-230.
[3]孙文斌,王荣,高荣华,等. 基于可见光谱和改进注意力的农作物病害识别[J]. 光谱学与光谱分析,2022,42(5):1572-1580.
[4]Lu J Z,Ehsani R,Shi Y Y,et al. Detection of multi-tomato leaf diseases (late blight,target and bacterial spots) in different stages by using a spectral-based sensor[J]. Scientific Reports,2018,8(1):2793.
[5]芦兵,孙俊,杨宁,等. 基于荧光透射谱和高光谱图像纹理的茶叶病害预测研究[J]. 光谱学与光谱分析,2019,39(8):2515-2521.
[6]张德荣,方慧,何勇. 可见/近红外光谱图像在作物病害检测中的应用[J]. 光谱学与光谱分析,2019,39(6):1748-1756.
[7]康丽,袁建清,高睿,等. 高光谱成像的水稻稻瘟病早期分级检测[J]. 光谱学与光谱分析,2021,41(3):898-902.
[8]张昭,王鹏,姚志凤,等. 基于多光谱荧光成像技术和SVM的葡萄霜霉病早期检测研究[J]. 光谱学与光谱分析,2021,41(3):828-834.
[9]曹银轩,黄卓,徐喜娟,等. 黄土高原植被日光诱导叶绿素荧光对气象干旱的响应[J]. 应用生态学报,2022,33(2):457-466.
[10]赵叶,竞霞,黄文江,等. 日光诱导叶绿素荧光与反射率光谱数据监测小麦条锈病严重度的对比分析[J]. 光谱学与光谱分析,2019,39(9):2739-2745.
[11]任守纲,陆海飞,袁培森,等. 基于显著性检测的黄瓜叶部病害图像分割算法[J]. 农业机械学报,2016,47(9):11-16.
[12]何自芬,黄俊璇,刘强,等. 基于非对称混洗卷积神经网络的苹果叶部病害分割[J]. 农业机械学报,2021,52(8):221-230.
[13]Narmadha R P,Sengottaiyan N,Kavitha R J. Deep transfer learning based rice plant disease detection model[J]. Intelligent Automation & Soft Computing,2022,31(2):1257-1271.
[14]Fuentes A,Yoon S,Kim T,et al. Open set self and across domain adaptation for tomato disease recognition with deep learning techniques[J]. Frontiers in Plant Science,2021,12:758027.
[15]Rashid J,Khan I,Ali G,et al. Multi-level deep learning model for potato leaf disease recognition[J]. Electronics,2021,10(17):2064.
[16]Elaraby A,Hamdy W,Alruwaili M. Optimization of deep learning model for plant disease detection using particle swarm optimizer[J]. Computers,Materials & Continua,2022,71(2):4019-4031.
[17]李萍,邵彧,齐国红,等. 基于跨深度学习模型的作物病害检测方法[J]. 江苏农业科学,2022,50(8):193-199.
[18]Qi J T,Liu X N,Liu K,et al. An improved YOLO v5 model based on visual attention mechanism:application to recognition of tomato virus disease[J]. Computers and Electronics in Agriculture,2022,194:106780.
[19]任守纲,贾馥玮,顾兴健,等. 反卷积引导的番茄叶部病害识别及病斑分割模型[J]. 农业工程学报,2020,36(12):186-195.
[20]李翠玲,李余康,谭昊然,等. 基于K-means聚类和RF算法的葡萄霜霉病检测分级方法[J]. 农业机械学报,2022,53(5):225-236,324.
[21]党满意,孟庆魁,谷芳,等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报,2020,36(2):193-200.
[22]丁维龙,谢涛,徐利锋,等. 基于虚拟模型的水稻冠层叶面积计算方法[J]. 农业工程学报,2017,33(2):192-198.
[23]陈柱,杨君. 基于三维点云的植物叶片重建及其面积估算[J]. 传感技术学报,2022,35(3):349-354.
[24]张萌,张德安,鲁晓燕,等. 枣树叶面积估算模型构建[J]. 果树学报,2020,37(12):1964-1973.
[25]吴新辉,毛政元,翁谦,等. 利用基于残差多注意力和ACON激活函数的神经网络提取建筑物[J]. 地球信息科学学报,2022,24(4):792-801.
[26]Ma N N,Zhang X Y,Liu M,et al,Activate or not:learning customized activation[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition,2021:8028-8038.
[27]Xue H,Sun M H,Liang Y H. ECANet:explicit cyclic attention-based network for video saliency prediction[J]. Neurocomputing,2022,468:233-244.
[28]赵璐璐,王学营,张翼,等. 基于YOLO v5s融合SENet的车辆目标检测技术研究[J]. 图学学报,2022,43(5):776-782.
[29]Zhao X,Li K Y,Li Y X,et al. Identification method of vegetable diseases based on transfer learning and attention mechanism[J]. Computers and Electronics in Agriculture,2022,193:106703.
[30]张红斌,熊其鹏,蒋子良,等. 联合SENet异构层特征融合与集成学习的材质图像识别[J]. 控制与决策,2022,37(6):1632-1642.
[31]Xu B,Wang N Y,Chen T Q,et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv:1505.00853,2015.
[32]苏宝峰,沈磊,陈山,等. 基于注意力机制的葡萄品种多特征分类方法[J]. 农业机械学报,2021,52(11):226-233,252.
[1]武玲,陆雅萍,丁泽华,等.草菇菌糠还田对大棚土壤肥力和黄瓜产量的影响[J].江苏农业科学,2013,41(05):372.
Wu Ling,et al.Effects of mushroom substrate return to fields on soil fertility and cucumber yield in greenhouses[J].Jiangsu Agricultural Sciences,2013,41(22):372.
[2]徐强,耿友玲,齐晓花,等.不同栽培环境下黄瓜果实单宁含量主基因-多基因遗传分析[J].江苏农业科学,2014,42(12):194.
Xu Qiang,et al.Genetic analysis of tannin content in cucumber by mixed model of major gene and polygene under different cultural environments[J].Jiangsu Agricultural Sciences,2014,42(22):194.
[3]董晓娅,邱白晶,管贤平.电化学分析方法检测黄瓜中残留的西维因[J].江苏农业科学,2014,42(11):337.
Dong Xiaoya,et al(7).Detection of carbaryl residues in cucumber by electrochemical method[J].Jiangsu Agricultural Sciences,2014,42(22):337.
[4]王素平,孙艳军.H2O2预处理对低温下黄瓜幼苗抗氧化酶同工酶的影响[J].江苏农业科学,2013,41(06):123.
Wang Suping,et al.Effect of H2O2 pretreatment on antioxidant isoenzyme in cucumber seedlings under chilling stress[J].Jiangsu Agricultural Sciences,2013,41(22):123.
[5]付瑞敏,韩鸿鹏,张丽琴,等.葡萄霜霉病和白粉病拮抗菌的分离、鉴定和He-Ne 激光诱变[J].江苏农业科学,2013,41(08):122.
Fu Ruimin,et al.Isolation and identification of antagonistic bacteria against grape downy mildew and powdery mildew,and its mutation under He-Ne laser irradiation[J].Jiangsu Agricultural Sciences,2013,41(22):122.
[6]田福发,陈立昶,姜若勇,等.内置式秸秆反应堆对日光温室番茄和黄瓜生长的影响[J].江苏农业科学,2013,41(09):143.
Tian Fufa,et al.Effect of built-in straw bio-reactor on growth of tomato and cucumber in greenhouse[J].Jiangsu Agricultural Sciences,2013,41(22):143.
[7]霍艳林,鲁顺保,关正君.盐胁迫对晋南部分主栽黄瓜品种种子萌发特性的影响[J].江苏农业科学,2016,44(03):165.
Huo Yanlin,et al.Effect of salt stress on seed germination characteristics of cucumber cultivars in southern Shanxi[J].Jiangsu Agricultural Sciences,2016,44(22):165.
[8]王素平.钙和水杨酸对低温下黄瓜幼苗抗氧化酶同工酶的影响[J].江苏农业科学,2016,44(03):168.
Wang Suping.Effects of Ca2+ and SA pretreatment on antioxidase isoforms in cucumber seedlings under chilling stress[J].Jiangsu Agricultural Sciences,2016,44(22):168.
[9]高攀,郭世荣,阳燕娟,等.Ca(NO3)2胁迫对白籽南瓜嫁接黄瓜幼苗生长及膜透性的影响[J].江苏农业科学,2013,41(11):157.
Gao Pan,et al.Effects of Ca(NO3)2 stress on growth and cell membrane permeability of white seed pumpkin grafted cucumber seedlings[J].Jiangsu Agricultural Sciences,2013,41(22):157.
[10]王红君,张梦,赵辉,等.基于BP神经网络的温室黄瓜灌溉预测模型[J].江苏农业科学,2013,41(11):407.
Wang Hongjun,et al.Irrigation forecast model of cucumber in greenhouse based on BP neural networks[J].Jiangsu Agricultural Sciences,2013,41(22):407.