[1]聂元元,蔡耀辉,颜满莲,等. 水稻低温冷害分析研究进展[J]. 江西农业学报,2011,23(3):63-66.
[2]李健陵,霍治国,吴丽姬,等. 孕穗期低温对水稻产量的影响及其生理机制[J]. 中国水稻科学,2014,28(3):277-288.
[3]刘琳帅,卞景阳,孙兴荣,等. 水稻低温冷害的研究进展[J]. 江苏农业科学,2022,50(24):9-15.
[4]吴立,霍治国,姜燕,等. 气候变暖背景下南方早稻春季低温灾害的发生趋势与风险[J]. 生态学报,2016,36(5):1263-1271.
[5]韩龙植,高熙宗,朴钟泽. 水稻耐冷性遗传及基因定位研究概况与展望[J]. 中国水稻科学,2002,16(2):193-198.
[6]陈红阳,贾琰,赵宏伟,等. 结实期低温胁迫对水稻强、弱势粒淀粉形成与积累的影响[J]. 中国水稻科学,2022,36(5):487-504.
[7]朱红. 抽穗后低温胁迫对水稻若干生理特性的影响[D]. 合肥:安徽农业大学,2015.
[8]Zeng Z C,Zhang S C,Li W Y,et al. Gene-coexpression network analysis identifies specific modules and hub genes related to cold stress in rice[J]. BMC Genomics,2022,23(1):251.
[9]曾研华,张玉屏,潘晓华,等. 花后低温对水稻籽粒灌浆与内源激素含量的影响[J]. 作物学报,2016,42(10):1551-1559.
[10]束胜,袁凌云,王长义,等. 植物生长调节物质提高蔬菜作物抗逆性的研究进展[J]. 长江蔬菜,2013(16):1-12.
[11]唐璇,吕树伟,范芝兰,等. 水稻耐冷性鉴定研究进展[J]. 植物遗传资源学报,2023,24(2):325-331.
[12]Saito K,Hayano-Saito Y,Kuroki M,et al. Map-based cloning of the rice cold tolerance gene Ctb1[J]. Plant Science,2010,179(1/2):97-102.
[13]Xie H G,Jiang J H,Zheng Y M,et al. Development of hybrid rice variety FY7206 with blast resistance gene Pid3 and cold tolerance gene Ctb1[J]. Rice Science,2016,23(5):266-273.
[14]王文霞,吴自明,曾勇军,等. 水氮耦合对直播早籼稻苗期低温冷害的调控效应[J]. 作物杂志,2023(2):83-90.
[15]杨丽,李洋,王佳勤,等. 孕穗期低温对小麦幼穗发育及产量的影响[J]. 核农学报,2022,36(12):2490-2500.
[16]耿立清,张凤鸣,许显滨,等. 低温冷害对黑龙江水稻生产的影响及防御对策[J]. 中国稻米,2004,10(5):33-34.
[17]王主玉,申双和. 水稻低温冷害研究进展[J]. 安徽农业科学,2010,38(22):11971-11973.
[18]马文东. 2009年低温冷害对黑龙江省垦区水稻的影响[J]. 种子,2012,31(10):80-81,85.
[19]陶乐圆,刘智蕾,刘婷婷,等. 营养生长期低温持续时间与水稻生长恢复的关系[J]. 生态学杂志,2018,37(12):3610-3616.
[20]金正勋,杨静,钱春荣,等. 灌浆成熟期温度对水稻籽粒淀粉合成关键酶活性及品质的影响[J]. 中国水稻科学,2005,19(4):377-380.
[21]胡春丽,李辑,林蓉,等. 东北水稻障碍型低温冷害变化特征及其与关键生育期温度的关系[J]. 中国农业气象,2014,35(3):323-329.
[22]郭丽颖,耿艳秋,金峰,等. 寒地水稻低温冷害防御栽培技术研究进展[J]. 作物杂志,2017(4):7-14.
[23]蔡志欢,张桂莲. 水稻低温冷害研究进展[J]. 作物研究,2018,32(3):249-255.
[24]尹思慧,徐蒋来,朱利群. 近30年江苏省水稻抽穗灌浆期低温冷害时空变化及对水稻产量的影响[J]. 江西农业学报,2016,28(5):7-13.
[25]王静,张成军,陈国祥,等. 低温对灌浆期水稻剑叶光合色素和类囊体膜脂肪酸的影响[J]. 中国水稻科学,2006,20(2):177-182.
[26]张金恩,聂秋生,李迎春,等. 颖花分化期低温处理对早稻叶片光合能力和产量的影响[J]. 中国农业气象,2014,35(4):410-416.
[27]朱珊,李永辉,熊宏亮,等. 低温胁迫对孕穗期水稻叶片内源激素的影响[J]. 江西农业大学学报,2014,36(1):21-25.
[28]王丹,肖应辉. 水稻孕穗期耐寒基因研究进展[J]. 中国农业信息,2015(11):97,108.
[29]Mamun E A,Alfred S,Cantrill L C,et al. Effects of chilling on male gametophyte development in rice[J]. Cell Biology International,2006,30(7):583-591.
[30]Takahashi S,Meguro-Maoka A,Yoshida M. Analysis of sugar content and expression of sucrose transporter genes (OsSUTs) in rice tissues in response to a chilling temperature[J]. Japan Agricultural Research Quarterly,2017,51(2):137-146.
[31]Oliver S N,Van Dongen J T,Alfred S C,et al. Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility[J]. Plant,Cell and Environment,2005,28(12):1534-1551.
[32] Al Mamun E,Cantrill L C,Overall R L,et al. Mechanism of low-temperature-induced pollen failure in rice[J]. Cell Biology International,2010,34(5):469-476.
[33]胡博文,谷娇娇,贾琰,等. 盐胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响[J]. 华北农学报,2019,34(1):115-123.
[34]夏楠,赵宏伟,吕艳超,等. 灌浆结实期冷水胁迫对寒地粳稻籽粒淀粉积累及相关酶活性的影响[J]. 中国水稻科学,2016,30(1):62-74.
[35]Commuri P D,Keeling P L. Chain-length specificities of maize starch synthase Ⅰ enzyme:studies of glucan affinity and catalytic properties[J]. The Plant Journal,2001,25(5):475-486.
[36]Nishi A,Nakamura Y,Tanaka N,et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm[J]. Plant Physiology,2001,127(2):459-472.
[37]柴晓杰. 玉米淀粉分支酶基因表达调控的研究[D]. 长春:吉林农业大学,2005.
[38]程方民,钟连进,孙宗修. 灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响[J]. 中国农业科学,2003,36(5):492-501.
[39]杨洛淼. 水稻孕穗期耐冷性QTL的遗传解析[D]. 哈尔滨:东北农业大学,2018.
[40]Lyu Y,Hussain M A,Luo D,et al. Current understanding of genetic and molecular basis of cold tolerance in rice[J]. Molecular Breeding,2019,39(12):1-18.
[41]Kim Y S,Lee M,Lee J H,et al. The unified ICE-CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis[J]. Plant Molecular Biology,2015,89(1):187-201.
[42]Chinnusamy V,Zhu J H,Zhu J K. Cold stress regulation of gene expression in plants[J]. Trends in Plant Science,2007,12(10):444-451.
[43]Covington M F,Maloof J N,Straume M,et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development[J]. Genome Biology,2008,9(8):R130.
[44]周炎. 水稻生物钟参与低温胁迫应答的机制研究[D]. 长沙:湖南农业大学,2020.
[45]成京晋,李浩,早浩龙,等. 植物响应低温胁迫的分子调控机制[J]. 分子植物育种,2021,19(9):3104-3115.
[46]Li C N,Ng C K Y,Fan L M. MYB transcription factors,active players in abiotic stress signaling[J]. Environmental and Experimental Botany,2015,114:80-91.
[47]Zhang T,Zhao X Q,Wang W S,et al. Comparative transcriptome profiling of chilling stress responsiveness in two contrasting rice genotypes[J]. PLoS One,2012,7(8):e43274.
[48]金铭路. 水稻微核心种质耐冷性鉴定及不同生长环境下耐冷性相关农艺性状的QTL检测[D]. 延吉:延边大学,2009.
[49]Ma Y,Dai X Y,Xu Y Y,et al. COLD1 confers chilling tolerance in rice[J]. Cell,2015,160(6):1209-1221.
[50]张明星. OsWRKY63调控水稻耐冷性的分子机制研究[D]. 长春:吉林大学,2022.
[51]潘英华. 水稻芽期、孕穗期耐冷性关联分析、耐冷基因克隆与功能验证[D]. 北京:中国农业大学,2015.
[52]纪素兰,江玲,王益华,等. 水稻种子耐低温发芽力的QTL定位及上位性分析[J]. 作物学报,2008,34(4):551-556.
[53]Ji S L,Jiang L,Wang Y H,et al. Quantitative trait loci mapping and stability for low temperature germination ability of rice[J]. Plant Breeding,2009,128(4):387-392.
[54]Hou M Y,Wang C M,Jiang L,et al. Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics,2004,31(7):701-706.
[55]Fujino K,Sekiguchi H,Matsuda Y,et al. Molecular identification of a major quantitative trait locus,qLTG3-1,controlling low-temperature germinability in rice[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(34):12623-12628.
[56]Satoh T,Tezuka K,Kawamoto T,et al. Identification of QTLs controlling low-temperature germination of the East European rice (Oryza sativa L.) variety Maratteli[J]. Euphytica,2016,207(2):245-254.
[57]乔永利,韩龙植,安永平,等. 水稻芽期耐冷性QTL的分子定位[J]. 中国农业科学,2005,38(2):217-221.
[58]Jiang L,Liu S J,Hou M Y,et al. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.)[J]. Field Crops Research,2006,98(1):68-75.
[59]Xie L X,Tan Z W,Zhou Y A,et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. Journal of Integrative Plant Biology,2014,56(8):749-759.
[60]严长杰,李欣,程祝宽,等. 利用分子标记定位水稻芽期耐冷性基因[J]. 中国水稻科学,1999,13(3):134-138.
[61]Kuroki M,Saito K,Matsuba S,et al. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8[J]. Theoretical and Applied Genetics,2007,115(5):593-600.
[62]Jiang N F,Shi S L,Shi H,et al. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice[J]. Frontiers in Plant Science,2017,8:1223.
[63]Li L F,Liu X,Xie K,et al. qLTG-9,a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.)[J]. Theoretical and Applied Genetics,2013,126(9):2313-2322.
[64]Li J L,Pan Y H,Guo H F,et al. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice[J]. Theoretical and Applied Genetics,2018,131(1):157-166.
[65]周勇,王中德,陶亚军,等. 水稻苗期耐冷性相关QTL qCTS3-1的鉴定和分子定位[J]. 江苏农业学报,2013,29(6):1181-1186.
[66]Andaya V C,Tai T H. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (Oryza sativa L.)[J]. Molecular Breeding,2007,20(4):349-358.
[67]Wang Z F,Wang F H,Zhou R,et al. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.)[J]. Euphytica,2011,181(3):405-413.
[68]王棋,范淑秀,郭江华,等. 利用籼粳交RIL群体对水稻发芽期和苗期耐冷性的QTL分析[J]. 华北农学报,2019,34(1):83-88.
[69]Li C J,Liu J D,Bian J X,et al. Identification of cold tolerance QTLs at the bud burst stage in 211 rice landraces by GWAS[J]. BMC Plant Biology,2021,21(1):542.
[70]史红丽. 水稻孕穗期耐冷基因qCTB7的精细定位和CTB4a的分子机制研究[D]. 北京:中国农业大学,2017.
[71]吕彬,杨庆,李大林,等. 耐冷优质水稻新品种龙粳65的选育及高产栽培、良种繁育技术[J]. 北方水稻,2021,51(2):39-40,43.
[72]赵海成,李红宇,郑桂萍,等. 寒地水稻新品种垦粳8号的选育及栽培技术[J]. 黑龙江农业科学,2021(1):165-168.
[73]郭震华. 水稻新品种龙粳3033的选育及配套栽培技术[J]. 黑龙江农业科学,2021(8):143-145.
[74]高世伟,聂守军,刘晴,等. 优质、抗逆、香型水稻新品种绥粳28的选育及应用前景分析[J]. 中国稻米,2019,25(4):106-108.
[75]杜欣芮,臧家祥,孙伟,等. 水稻新品种垦稻90的选育及栽培要点[J]. 现代化农业,2020(12):37-38.
[76]吴立成,闫平. 优质粳稻新品种松粳28的选育及应用[J]. 黑龙江农业科学,2020(1):137-138.
[77]张海彬,李晓蕾,宗淑娟. 水稻新品种——龙垦227[J]. 现代化农业,2019(6):34-35.
[78]程芳艳,李春光,刘永巍,等. 寒地优质水稻新品种垦研017的选育及栽培技术[J]. 北方水稻,2019,49(6):50-51,53.
[79]宋成艳,刘乃生,周雪松,等. 水稻新品种龙粳69的选育及特征特性[J]. 北方水稻,2018,48(6):56-57.
[80]张海彬,宗淑娟,李晓蕾. 水稻新品种——龙垦223[J]. 现代化农业,2018(10):38-39.
[81]Hardeland R. Melatonin and the theories of aging:a critical appraisal of melatonins role in antiaging mechanisms[J]. Journal of Pineal Research,2013,55(4):325-356.
[82]Zhang N,Sun Q Q,Zhang H J,et al. Roles of melatonin in abiotic stress resistance in plants[J]. Journal of Experimental Botany,2015,66(3):647-656.
[83]单莉莉. 孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J]. 中国农业科技导报,2023,25(9):23-33.
[84]李贺,姜欣悦,陈忠诚,等. 外源褪黑素对低温胁迫下大豆V1期幼苗光合荧光及抗氧化系统的影响[J]. 中国油料作物学报,2020,42(4):640-648.
[85]董倩. N-乙酰-L-半胱氨酸、褪黑素引发对低温胁迫下杂交水稻种子萌发和幼苗生长及基因表达的影响[D]. 杭州:浙江大学,2020.
[86]朱春权,魏倩倩,项兴佳,等. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报,2022,48(8):2016-2027.
[87]王文娟,师尚礼,何龙,等. 干旱胁迫下多胺在植物体内的积累及其作用[J]. 草业学报,2023,32(6):186-202.
[88]Imai A,Matsuyama T,Hanzawa Y,et al. Spermidine synthase genes are essential for survival of Arabidopsis[J]. Plant Physiology,2004,135(3):1565-1573.
[89]Imai R,Ali A,Pramanik M H R,et al. A distinctive class of spermidine synthase is involved in chilling response in rice[J]. Journal of Plant Physiology,2004,161(7):883-886.
[90]Choubey A,Rajam M V. RNAi-mediated silencing of spermidine synthase gene results in reduced reproductive potential in tobacco[J]. Physiology and Molecular Biology of Plants,2018,24(6):1069-1081.
[91]Zeng Y H,Zhang Y P,Xiang J,et al. Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity,endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings[J]. Journal of Integrative Agriculture,2016,15(2):295-308.
[92]杨建昌,朱庆森,王志琴,等. 水稻籽粒中内源多胺及其与籽粒充实和粒重的关系[J]. 作物学报,1997,23(4):385-392.
[93]Aldridge D C,Galt S,Giles D,et al. Cheminform abstract:metaboliten von Lasiodiplodia theobromae[J]. Chemischer Informationsdienst Organische Chemie,1971,2(32):1623-1627.
[94]Liu Z,Zhang S M,Sun N,et al. Functional diversity of jasmonates in rice[J]. Rice,2015,8(1):42.
[95]Allah E F A,Alqarawi A,Al-Rashed S,et al. Modulation of adverse impact of chilling in Vicia faba L. by methyl jasmonate involves changes in antioxidant metabolism and metabolites[J]. Pakistan Journal of Botany,2016,48(5):1915-1923.
[96]Hu Y R,Jiang Y J,Han X,et al. Jasmonate regulates leaf senescence and tolerance to cold stress:crosstalk with other phytohormones[J]. Journal of Experimental Botany,2017,68(6):1361-1369.
[97]Singh I,Shah K. Exogenous application of methyl jasmonate lowers the effect of cadmium-induced oxidative injury in rice seedlings[J]. Phytochemistry,2014,108:57-66.
[98]Tang S,Zhao Y F,Ran X A,et al. Exogenous application of methyl jasmonate at the booting stage improves rices heat tolerance by enhancing antioxidant and photosynthetic activities[J]. Agronomy,2022,12(7):1573.
[99]张蕊,吕俊,米青山,等. 低温下外源水杨酸对水稻幼苗抗氧化酶系的影响[J]. 西南农业大学学报(自然科学版),2006,28(1):29-32,36.
[100]鲜先毅,冯德玉,崔广艳,等. 外源水杨酸对水稻幼苗盐胁迫下生理效应的影响[J]. 绵阳师范学院学报,2014,33(2):75-80.
[101]Wang W L,Wang X,Huang M,et al. Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid[J]. Journal of Plant Growth Regulation,2021,40(2):811-823.
[102]Shim I S,Momose Y,Yamamoto A,et al. Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants[J]. Plant Growth Regulation,2003,39(3):285-292.
[103]Miura K,Tada Y. Regulation of water,salinity,and cold stress responses by salicylic acid[J]. Frontiers in Plant Science,2014,5:4.
[104]Xia J C,Zhao H,Liu W Z,et al. Role of cytokinin and salicylic acid in plant growth at low temperatures[J]. Plant Growth Regulation,2009,57(3):211-221.
[105]杨茜. 水稻叶片早衰基因OsPLS1的功能研究[D]. 杭州:浙江大学,2016.
[106]Chen T T,Zhao X A,Zhang C X,et al. Application of salicylic acid improves filling of inferior grains of rice during late maturity under mild cold stress[J]. Crop Science,2017,57(4):2130-2142.
[107]王文婷. 播期对直播稻产量形成与品质的影响[D]. 扬州:扬州大学,2015.
[108]魏喜陆,郑新峰. 三江平原腹地水稻低温冷害问题分析[J]. 现代化农业,2003(3):15-17.
[109]李景蕻. 高海拔生态区氮肥运筹和增温措施对水稻生长发育的影响及高产栽培技术研究[D]. 南京:南京农业大学,2009.
[110]李跃娜. 低温胁迫下不同磷素营养水平对水稻生理特性及产量的影响[D]. 长春:吉林大学,2011.
[111]曹娜,陈小荣,贺浩华,等. 幼穗分化期喷施磷钾肥对早稻抵御低温及产量和生理特性的影响[J]. 应用生态学报,2017,28(11):3562-3570.
[112]徐泽华. 在低温胁迫下外源硅对寒地粳稻叶片生理生化指标的影响[D]. 哈尔滨:东北农业大学,2018.
[1]马旭俊,刘春娟,吕世博,等.绿色荧光蛋白基因在水稻遗传转化中的应用[J].江苏农业科学,2013,41(04):35.
[2]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统
作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[3]崔月峰,孙国才,王桂艳,等.不同施氮水平和前氮后移措施对水稻产量
及氮素利用率的影响[J].江苏农业科学,2013,41(04):66.
[4]张其蓉,宋发菊,田进山,等.长江中下游稻区水稻区域试验品种抗稻瘟病鉴定与评价[J].江苏农业科学,2013,41(04):92.
[5]王麒,张小明,卞景阳,等.不同插秧密度对黑龙江省第二积温带水稻产量及产量构成的影响[J].江苏农业科学,2013,41(05):60.
Wang Qi,et al.Effect of different transplanting density on yield and yield component of rice in second temperature zone of Heilongjiang Province[J].Jiangsu Agricultural Sciences,2013,41(2):60.
[6]张国良,张森林,丁秀文,等.基质厚度和含水量对水稻育秧的影响[J].江苏农业科学,2013,41(05):62.
Zhang Guoliang,et al.Effects of substrate thickness and water content on growth of rice seedlings[J].Jiangsu Agricultural Sciences,2013,41(2):62.
[7]赵忠宝,朱清海.稻-蟹-鳅生态系统的能值分析[J].江苏农业科学,2013,41(05):349.
Zhao Zhongbao,et al.Emergy analysis of paddy-crab-loach ecosystem[J].Jiangsu Agricultural Sciences,2013,41(2):349.
[8]杨红福,姚克兵,束兆林,等.甲氧基丙烯酸酯类杀菌剂对水稻恶苗病的田间药效[J].江苏农业科学,2014,42(12):166.
Yang Hongfu,et al.Field efficacy of strobilurin fungicides against rice bakanae disease[J].Jiangsu Agricultural Sciences,2014,42(2):166.
[9]唐成,陈露,安敏敏,等.稻瘟病诱导水稻幼苗叶片氧化还原系统的特征谱变化[J].江苏农业科学,2014,42(12):141.
Tang Cheng,et al.Characteristic spectral changes of redox homeostasis system in rice seedling leaves induced by rice blast[J].Jiangsu Agricultural Sciences,2014,42(2):141.
[10]万云龙.优质水稻—春甘蓝轮作高效栽培模式[J].江苏农业科学,2014,42(12):90.
Wan Yunlong.Efficient cultivation mode of high quality rice-spring cabbage rotation[J].Jiangsu Agricultural Sciences,2014,42(2):90.