|本期目录/Table of Contents|

[1]欧阳子龙,贾湘璐,石景忠,等.间作对作物、土壤及微生物影响的研究进展[J].江苏农业科学,2024,52(2):18-30.
 Ouyang Zilong,et al.Research progress on effects of intercropping on crops,soils and microorganisms[J].Jiangsu Agricultural Sciences,2024,52(2):18-30.
点击复制

间作对作物、土壤及微生物影响的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第2期
页码:
18-30
栏目:
专论与综述
出版日期:
2024-02-20

文章信息/Info

Title:
Research progress on effects of intercropping on crops,soils and microorganisms
作者:
欧阳子龙123贾湘璐123石景忠3韦妙琴12滕维超3
1.南宁植物园,广西南宁 530002; 2.南宁青秀山风景名胜旅游开发有限责任公司,广西南宁 530004; 3.广西大学,广西南宁 530004
Author(s):
Ouyang Zilonget al
关键词:
间作植物土壤微生物土壤酶
Keywords:
-
分类号:
S344.2
DOI:
-
文献标志码:
A
摘要:
间作是一种生态农业,通过植物间优势互补来提高植物的养分积累以促进生长。筛选出优良的间作模式可实现增产增收。首先,间作通过地上部生态位提高植物对光资源的利用能力,并协同地下部生态位提高植物抗逆性和抗病性,直接促进产量增加。其次,间作能改良土壤结构,改变土壤理化性质,提高养分含量和酶活性。较好的土壤条件又能正向促进植物生长、生理和养分吸收,体现出多样性净效益,使得间作系统整体产量提高。最后,间作亦会丰富土壤中微生物群落多样性,改良土壤,平衡有益和有害微生物,对植物生长发育有利。本文从植物生长生产、土壤理化结构和土壤微生物等方面综述了近10年来国内外间作研究概况,并对间作的生态和经济效益、研究的重点方向、深层次机理的探究、产业面临的瓶颈和高通量测序技术的应用这5个方面进行了展望,以期揭示间作对植物、土壤和微生物的影响,为未来间作产业发展提供经验和参考。
Abstract:
-

参考文献/References:

[1]董宛麟,张立祯,于洋,等. 农林间作生态系统的资源利用研究进展[J]. 中国农学通报,2011,27(28):1-8.
[2]贺佳,安曈昕,韩学坤,等. 间作群体生态生理研究进展[J]. 作物杂志,2011(4):7-11.
[3]Schmidt O,Curry J P.Effects of earthworms on biomass production,nitrogen allocation and nitrogen transfer in wheat-clover intercropping model systems[J]. Plant and Soil,1999,214:187-198.
[4]崔爱花,刘帅,白志刚,等. 间作对旱地作物生长发育及生理生态影响的研究进展[J]. 中国农学通报,2021,37(18):1-5.
[5]方旭飞. 种植模式和覆盖方式对土壤水分和玉米生长指标的影响及效益分析[D]. 沈阳:沈阳农业大学,2018:7-10.
[6]李美. 玉米花生间作群体互补竞争及防风蚀效应研究[D]. 沈阳:沈阳农业大学,2012:6-18.
[7]吴永波,吴殿鸣,薛建辉,等. 杨树-冬小麦间作系统细根分布特征及对施氮的响应[J]. 生态与农村环境学报,2015,31(3):320-325.
[8]Laffray X,Toulab K,Balland-Bolou-Bi C,et al. Evaluation of trace metal accumulation in six vegetable crops intercropped with phytostabilizing plant species,in a French urban wasteland[J]. Environmental Science and Pollution Research,2021,28(40):56795-56807.
[9]Xue Z L,Wang Y L,Yang H J,et al. Silage fermentation and in vitro degradation characteristics of orchardgrass and alfalfa intercrop mixtures as influenced by forage ratios and nitrogen fertilizing levels[J]. Sustainability,2020,12(3):871.
[10]Salgado G C,Ambrosano E J,Rossi F,et al. Biological N fixation and N transfer in an intercropping system between legumes and organic cherry tomatoes in succession to green corn[J]. Agriculture,2021,11(8):690.
[11]Hu S,Liu L J,Zuo S F,et al. Soil salinity control and cauliflower quality promotion by intercropping with five turfgrass species[J]. Journal of Cleaner Production,2020,266:121991.
[12]童炳丽,刘济明,熊雪,等. 米槁-绿壳砂林药间作系统可行性[J]. 生态学报,2019,39(15):5690-5700.
[13]王丽杰. 玉米与大豆间作高产栽培技术[J]. 种子科技,2019,37(15):56,59
[14]Zhao X H,Dong Q Q,Han Y,et al. Maize/peanut intercropping improves nutrient uptake of side-row maize and system microbial community diversity[J]. BMC Microbiology,2022,22(1):14.
[15]金建新,何进勤,冯付军,等. 马铃薯/玉米间作对作物生理生态特性的影响[J]. 贵州农业科学,2019,47(5):14-19.
[16]邹晓锦,刘子琪,牛世伟. 花生与豇豆间作体系节肥增效试验初报[J]. 南方农业,2019,13(32):3-4.
[17]Liu C Z,Cai Q Z,Liao P R,et al. Effects of Fallopia multiflora-Andrographis paniculata intercropping model on yield,quality,soil nutrition and rhizosphere microorganisms of F. multiflora[J]. Plant and Soil,2021,467(1):465-481.
[18]Nadir S,Othieno C,Kebeney S. Nutrient dynamics in Eucalyptus plantations of different ages before and during intercropping[J]. International Journal of Plant & Soil Science,2018,22(1):1-13.
[19]Bayala R,Diedhiou I,Bogie N A,et al. Intercropping with Guiera senegalensis in a semi-arid area to mitigate early-season abiotic stress in A.hypogea and P.glaucum[J]. Journal of Agronomy and Crop Science,2022,208(2):158-167.
[20]Liu H M,Gao Y,Gao C Q,et al. Study of the physiological mechanism of delaying cucumber senescence by wheat intercropping pattern[J]. Journal of Plant Physiology,2019,234/235:154-166.
[21]Yan Y X,Yang J,Wan X M,et al. Temporal and spatial differentiation characteristics of soil arsenic during the remediation process of Pteris vittata L. and Citrus reticulata Blanco intercropping[J]. Science of the Total Environment,2022,812:152475.
[22]Chen C F,Liu W J,Wu J N,et al. Can intercropping with the cash crop help improve the soil physico-chemical properties of rubber plantations?[J]. Geoderma,2019,335:149-160.
[23]Zhang X L,Teng Z Y,Zhang H H,et al. Nitrogen application and intercropping change microbial community diversity and physicochemical characteristics in mulberry and alfalfa rhizosphere soil[J]. Journal of Forestry Research,2021,32(5):2121-2133.
[24]Gong X W,Dang K,Liu L,et al. Intercropping combined with nitrogen input promotes proso millet (Panicum miliaceum L.) growth and resource use efficiency to increase grain yield on the Loess Plateau of China[J]. Agricultural Water Management,2021,243:106434.
[25]吕雯. 玉米‖大豆复合群体耗水特征与生长对灌水量的响应[D]. 杨凌:西北农林科技大学,2021:102-103.
[26]Shah T M,Tasawwar S,Bhat M A,et al. Intercropping in rice farming under the system of rice intensification—an agroecological strategy for weed control,better yield,increased returns,and social-ecological sustainability[J]. Agronomy,2021,11(5):1010.
[27]Koskey G,Leoni F,Carlesi S,et al. Exploiting plant functional diversity in durum wheat–lentil relay intercropping to stabilize crop yields under contrasting climatic conditions[J]. Agronomy,2022,12(1):210.
[28]Singh R,Chaudhary R,Somasundaram J,et al. Impact of crop covers on soil properties,runoff,soil-nutrients losses and crop productivity in vertisols of central India[J]. Indian Journal of Soil Conservation,2014,42(3):268-275.
[29]刘洋,董智,董俊,等. 辽西半干旱区不同玉米间作花生模式对作物产量和水分利用效率的影响[J]. 辽宁农业科学,2022(1):8-12.
[30]王飞,陈旭,万素梅,等. 枣棉间作行距和灌水量对棉花干物质及产量的影响[J]. 江苏农业科学,2021,49(9):70-74.
[31]王甜,庞婷,杜青,等. 田间配置对间作大豆光合特性、干物质积累及产量的影响[J]. 华北农学报,2020,35(2):107-116.
[32]Khanal U,Stott K J,Armstrong R,et al. Intercropping—evaluating the advantages to broadacre systems[J]. Agriculture,2021,11(5):453.
[33]Gurin A,Rezvyakova S,Revin N.Nutritional regime of the soil and growth activity of the apple tree root system in orchards with legume-cereal grass intercropping[J]. E3S Web of Conferences,2021,247:01029.
[34]Ma L S,Li Y J,Wu P T,et al. Effects of varied water regimes on root development and its relations with soil water under wheat/maize intercropping system[J]. Plant and Soil,2019,439(1/2):113-130.
[35]Gong X W,Dang K,Lv S M,et al. Interspecific root interactions and water-use efficiency of intercropped proso millet and mung bean[J]. European Journal of Agronomy,2020,115:126034.
[36]Mushagalusa G N,Ledent J F,Draye X.Shoot and root competition in potato/maize intercropping:effects on growth and yield[J]. Environmental and Experimental Botany,2008,64(2):180-188.
[37]Gao X A,Wu M,Xu R N,et al. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease,red crown rot[J]. PLoS One,2014,9(5):e95031.
[38]Jiang Y Y,Zheng Y,Tang L,et al. Rhizosphere biological processes of legume//cereal intercropping systems:a review[J]. Journal of Agricultural Resources and Environment,2016,33(5):407-415.
[39]Fu X P,Wu X,Zhou X G,et al. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae[J]. Frontiers in Plant Science,2015,6:726.
[40]Feng C,Sun Z X,Zhang L Z,et al. Maize/peanut intercropping increases land productivity:a meta-analysis[J]. Field Crops Research,2021,270:108208.
[41]Pivato B,Semblat A,Guégan T,et al. Rhizosphere bacterial networks,but not diversity,are impacted by pea-wheat intercropping[J]. Frontiers in Microbiology,2021,12:674556.
[42]唐秀梅,蒙秀珍,蒋菁,等. 甘蔗间作花生对不同耕层土壤微生态的影响[J]. 中国油料作物学报,2020,42(5):713-722.
[43]古龙,夏翩翩,李建安.黄菊对油茶林2种杂草萌发和幼苗生长的化感作用[J]. 经济林研究,2020,38(2):34-45.
[44]Zhang W P,Gao S N,Li Z X,et al. Shifts from complementarity to selection effects maintain high productivity in maize/legume intercropping systems[J]. Journal of Applied Ecology,2021,58(11):2603-2613.
[45]李超楠,王若水,周宣,等. 滴灌水肥调控对苹果-大豆间作系统光合特性和水分利用的影响[J]. 水土保持学报,2020,34(3):299-310.
[46]Zhang W P,Liu G C,Sun J H,et al. Temporal dynamics of nutrient uptake by neighbouring plant species:evidence from intercropping[J]. Functional Ecology,2017,31(2):469-479.
[47]Yang Y,David M,Tjeerd J M,et al. Robust increases of land equivalent ratio with temporal niche differentiation:a meta-quantile regression[J]. Agronomy Journal,2016,108(6):2269-2279.
[48]Wang R N,Sun Z X,Bai W,et al. Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping[J]. Field Crops Research,2021,271:108239.
[49]Wang Y Q,Zhao Z G,Li J P,et al. Does maize hybrid intercropping increase yield due to border effects?[J]. Field Crops Research,2017,214:283-290.
[50]Singh S P.Studies on spatial arrangement in sorghum-legume intercropping systems[J]. The Journal of Agricultural Science,1981,97(3):655-661.
[51]Levine R P.The mechanism of photosynthesis[J]. Scientific American,1969,221(6):58-72.
[52]Kumarathunge D P,Medlyn B E,Drake J E,et al. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale[J]. The New Phytologist,2019,222(2):768-784.
[53]Sharma A,Kumar V,Singh R,et al. Effect of seed pre-soaking with 24-epibrassinolide on growth and photosynthetic parameters of Brassica juncea L. in imidacloprid soil[J]. Ecotoxicology and Environmental Safety,2016,133:195-201.
[54]Ergo V V,Veas R E,Vega C R C,et al. Leaf photosynthesis and senescence in heated and droughted field-grown soybean with contrasting seed protein concentration[J]. Plant Physiology and Biochemistry,2021,166:437-447.
[55]Zeng R E,Chen T T,Wang X Y,et al. Physiological and expressional regulation on photosynthesis,starch and sucrose metabolism response to waterlogging stress in peanut[J]. Frontiers in Plant Science,2021,12:601771.
[56]蔡倩. 玉米和花生对水分胁迫的响应机制及灌水技术研究[D]. 沈阳:沈阳农业大学,2017:1-2.
[57]Giménez-Moolhuyzen M,van der Blom J,Lorenzo-Mínguez P,et al. Photosynthesis inhibiting effects of pesticides on sweet pepper leaves[J]. Insects,2020,11(2):69.
[58]Ren X W,Tang J C,Wang L,et al. Microplastics in soil-plant system:effects of nano/microplastics on plant photosynthesis,rhizosphere microbes and soil properties in soil with different residues[J]. Plant and Soil,2021,462(1):561-576.
[59]Teresa G S M,Carlos G,Julen U,et al. Mycorrhizal-assisted phytoremediation and intercropping strategies improved the health of contaminated soil in a peri-urban area[J]. Frontiers in Plant Science,2021,12:693044.
[60]Lv J X,Dong Y,Dong K,et al. Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates[J]. Plant and Soil,2020,448(1):153-164.
[61]单明娟,秦华,陈俊辉,等. 两种间作体系对丛枝菌根真菌侵染及多氯联苯去除的影响[J]. 应用与环境生物学报,2018,24(3):470-477.
[62]Jo S G,Kang Y I,Om K S,et al. Growth,photosynthesis and yield of soybean in ridge-furrow intercropping system of soybean and flax[J]. Field Crops Research,2022,275:108329.
[63]Zhou T,Wang L,Sun X,et al. Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping[J]. Field Crops Research,2021,262:108054.
[64]Feng L Y,Ali Raza M,Shi J Y,et al. Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system[J]. European Journal of Agronomy,2020,118:126092.
[65]朱文旭,张会慧,许楠,等. 间作对桑树和谷子生长和光合日变化的影响[J]. 应用生态学报,2012,23(7):1817-1824.
[66]Chen X F,Sun N,Gu Y,et al. Photosynthetic and chlorophyll fluorescence responses in maize and soybean strip intercropping system[J]. International Journal of Agriculture and Biology,2020,24(4):799-811.
[67]Bekele B,Ademe D,Gemi Y,et al. Evaluation of intercropping legume covers with maize on soil moisture improvement in misrak azerinet berbere woreda,SNNPR,Ethiopia[J]. Water Conservation Science and Engineering,2021,6(3):145-151.
[68]Marschner P,Zheng B.Direction and magnitude of the change in water content between two periods influence soil respiration,microbial biomass and nutrient availability which can be modified by intermittent air-drying[J]. Soil Biology and Biochemistry,2022,166:108559.
[69]Dou X Y,Wang R S,Zhou X,et al. Soil water,nutrient distribution and use efficiencies under different water and fertilizer coupling in an apple-maize alley cropping system in the Loess Plateau,China[J]. Soil and Tillage Research,2022,218:105308.
[70]张丽芳,胡海林. 土壤酸碱性对植物生长影响的研究进展[J]. 贵州农业科学,2020,48(8):40-43.
[71]唐琨,朱伟文,周文新,等. 土壤pH对植物生长发育影响的研究进展[J]. 作物研究,2013,27(2):207-212.
[72]Daraz U,Li Y,Sun Q Y,et al. Inoculation of Bacillus spp. modulate the soil bacterial communities and available nutrients in the rhizosphere of vetiver plant irrigated with acid mine drainage[J]. Chemosphere,2021,263:128345.
[73]王晖,邢小军,许自成. 攀西烟区紫色土pH值与土壤养分的相关分析[J]. 中国土壤与肥料,2007(6):19-22,49.
[74]Hooper S L,Burstein H J.Minimization of extracellular space as a driving force in prokaryote association and the origin of eukaryotes[J]. Biology Direct,2014,9(1):1-42.
[75]秦昌鲜,彭崇,郭强,等. 甘蔗花生间作体系中红壤地根际pH值与有效磷含量的关系[J]. 广西糖业,2019(3):18-24.
[76]赵香兰. 有机质在果园土壤肥力中的作用[J]. 河北果树,1990(4):47-50.
[77]余涵霞,王家宜,万方浩,等. 植物凋落物影响土壤有机质分解的研究进展[J]. 生物安全学报,2018,27(2):88-94.
[78]邵帅,何红波,张威,等. 土壤有机质形成与来源研究进展[J]. 吉林师范大学学报(自然科学版),2017,38(1):126-130.
[79]寇建村,杨文权,李尚玮,等. 我国果园土壤有机质研究进展[J]. 北方园艺,2016(4):185-191.
[80]Zhang Y,Han M Z,Song M N,et al. Intercropping with aromatic plants increased the soil organic matter content and changed the microbial community in a pear orchard[J]. Frontiers in Microbiology,2021,12:616932.
[81]Tang X M,Zhang Y X,Jiang J,et al. Sugarcane/peanut intercropping system improves physicochemical properties by changing N and P cycling and organic matter turnover in root zone soil[J]. PeerJ,2021,9:e10880.
[82]Nyawade S O,Karanja N N,Gachene C K K,et al. Short-term dynamics of soil organic matter fractions and microbial activity in smallholder potato-legume intercropping systems[J]. Applied Soil Ecology,2019,142:123-135.
[83]Cong W F,Hoffland E,Li L,et al. Intercropping affects the rate of decomposition of soil organic matter and root litter[J]. Plant and Soil,2015,391(1/2):399-411.
[84]Agnan Y,Courault R,Alexis M A,et al. Distribution of trace and major elements in subarctic ecosystem soils:sources and influence of vegetation[J]. Science of the Total Environment,2019,682:650-662.
[85]Inselsbacher E,Wanek W.An unexpected source of nitrogen for root uptake:positively charged amino acids dominate soil diffusive nitrogen fluxes[J]. New Phytologist,2021,231(6):2104-2106.
[86]Costa Tania L,Sampaio Everardo V S B,Araújo Elcida L,et al. Contributions of Leguminosae to young and old stands of neotropical forests under different environmental conditions[J]. Annals of Forest Science,2021,78(2):48.
[87]Nyawade S O,Karanja N N,Gachene C K K,et al. Optimizing soil nitrogen balance in a potato cropping system through legume intercropping[J]. Nutrient Cycling in Agroecosystems,2020,117(1):43-59.
[88]Li L K,Zou Y,Wang Y H,et al. Effects of corn intercropping with soybean/peanut/millet on the biomass and yield of corn under fertilizer reduction[J]. Agriculture,2022,12(2):151.
[89]王华,牛德奎,胡冬南,等. 不同肥料对油茶林土壤氮素含量、微生物群落及其功能的影响[J]. 植物营养与肥料学报,2014,20(6):1468-1476.
[90]Pierre W H,Norman A G. Soil and fertilizer phosphorus in crop nutrition[M]. New York:Academic Press,1953:1-16.
[91]Tang X Y,Zhang C C,Yu Y,et al. Intercropping legumes and cereals increases phosphorus use efficiency;a meta-analysis[J]. Plant and Soil,2020,460:89-104.
[92]Latati M,Blavet D,Alkama N,et al. The intercropping cowpea-maize improves soil phosphorus availability and maize yields in an alkaline soil[J]. Plant and Soil,2014,385(1/2):181-191.
[93]Tomohiro N,Yasuhiro T,Tovohery R,et al. Soil phosphorus retention can predict responses of phosphorus uptake and yield of rice plants to P fertilizer application in flooded weathered soils in the central Highlands of Madagascar[J]. Geoderma,2021,402:115326.
[94]Zhao X,Lyu Y,Jin K M,et al. Leaf phosphorus concentration regulates the development of cluster roots and exudation of carboxylates in Macadamia integrifolia[J]. Frontiers in Plant Science,2021,11:610591.
[95]Wen Z H,Pang J Y,Tueux G,et al. Contrasting patterns in biomass allocation,root morphology and mycorrhizal symbiosis for phosphorus acquisition among 20 chickpea genotypes with different amounts of rhizosheath carboxylates[J]. Functional Ecology,2020,34(7):1311-1324.
[96]孙宝茹.玉米/紫花苜蓿间作磷素高效吸收利用的根系-土壤互作机理[D]. 长春:东北师范大学,2017:2-12.
[97]俞巧钢,叶静,杨梢娜,等. 不同施氮量对单季稻养分吸收及氨挥发损失的影响[J]. 中国水稻科学,2012,26(4):487-494.
[98]王立梅,刘奕清,阮玉娟. 植物钾素研究进展[J]. 中国园艺文摘,2015,31(5):71,148.
[99]Oosterhuis D M,Loka D A,Kawakami E M,et al. The physiology of potassium in crop production[J]. Advances in Agronomy,2014,126:203-233.
[100]Zhu L Z,He J,Tian Y,et al. Intercropping Wolfberry with Gramineae plants improves productivity and soil quality[J]. Scientia Horticulturae,2022,292:110632.
[101]Wu T,Qin Y,Li M.Intercropping of tea (Camellia sinensis L.) and Chinese chestnut:variation in the structure of rhizosphere bacterial communities[J]. Journal of Soil Science and Plant Nutrition,2021,21(3):2178-2190.
[102]Fan Y F,Wang Z L,Liao D P,et al. Uptake and utilization of nitrogen,phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations[J]. Scientific Reports,2020,10(1):9504.
[103]Shen X F,Zhao Z H,Chen Y.Effects of intercropping with peanut and silicon application on sugarcane growth,yield and quality[J]. Sugar Tech,2019,21(3):437-443.
[104]姜勇,徐柱文,王汝振,等. 长期施肥和增水对半干旱草地土壤性质和植物性状的影响[J]. 应用生态学报,2019,30(7):2470-2480.
[105]李娟,林位夫,周立军,等. 成龄胶园间作不同豆科作物对土壤养分的影响[J]. 热带农业科学,2014,34(7):5-11.
[106]董晓伟. 银杏复合经营土壤微量元素特征及有效性影响因素研究[D]. 南京:南京林业大学,2013:3-8.
[107]张蓓,刘林婷,刘若南,等. 钙与IAA对易裂果蜜广橘果皮活性氧代谢和相关抗氧化基因表达的影响[J]. 果树学报,2021,38(12):2034-2044.
[108]Chen Z C,Peng W T,Li J,et al. Functional dissection and transport mechanism of magnesium in plants[J]. Seminars in Cell & Developmental Biology,2018,74:142-152.
[109]Chernev P,Fischer S,Hoffmann J,et al. Light-driven formation of manganese oxide by todays photosystem Ⅱ supports evolutionarily ancient manganese-oxidizing photosynthesis[J]. Nature Communications,2020,11:6110.
[110]夏海勇,薛艳芳,孟维伟,等. 间套作体系作物-土壤铁和锌营养研究进展[J]. 应用生态学报,2015,26(4):1263-1270.
[111]李泓池,张洁,蔡传涛. 微量元素铜锰配施对密花豆生长、光合和生物量的影响[J]. 热带农业科学,2022,42 (6):17-22.
[112]李峤虹. 缺硼胁迫对枳根系生长发育及相关基因表达的影响研究[D]. 武汉:华中农业大学,2016:2-12.
[113]Vinichuk M,Bergman R,Sundell-Bergman S,et al. Response of spring wheat and potato to foliar application of Zn,Mn and EDTA fertilizers on 137Cs uptake[J]. Journal of Environmental Radioactivity,2021,227:106466.
[114]李娟,周立军. 间作五指毛桃土壤和根主要中微量元素含量及其相关性[J]. 土壤,2020,52(3):645-649.
[115]Cao X R,Wang X Z,Lu M,et al. The Cd phytoextraction potential of hyperaccumulator Sedum alfredii-oilseed rape intercropping system under different soil types and comprehensive benefits evaluation under field conditions[J]. Environmental Pollution,2021,285:117504.
[116]Rasmussen C R,Thorup-Kristensen K,Dresbll D B. The effect of drought and intercropping on chicory nutrient uptake from below 2 m studied in a multiple tracer setup[J]. Plant and Soil,2020,446(1):543-561.
[117]李冬梅. 小麦/苜蓿间作的土壤微生物多样性和种间促进作用研究[D]. 哈尔滨:东北林业大学,2015:11-12.
[118]陈新新. 果园间作芳香植物对土壤微生物多态性及碳氮循环的影响[D]. 北京:北京农学院,2014:1-5.
[119]Tang L,Hamid Y,Zehra A,et al. Fava bean intercropping with Sedum alfredii inoculated with endophytes enhances phytoremediation of cadmium and lead co-contaminated field[J]. Environmental Pollution,2020,265(Part A):114861.
[120]Trap J,Riah W,Akpa-Vinceslas M,et al. Improved effectiveness and efficiency in measuring soil enzymes as universal soil quality indicators using microplate fluorimetry[J]. Soil Biology and Biochemistry,2012,45:98-101.
[121]Muscolo A,Settineri G,Attinà E.Early warning indicators of changes in soil ecosystem functioning[J]. Ecological Indicators,2015,48:542-549.
[122]Caldwell B A. Enzyme activities as a component of soil biodiversity:a review[J]. Pedobiologia,2005,49(6):637-644.
[123]Kumar A,Blagodaskaya E,Dippold M A,et al. Positive intercropping effects on biomass production are species-specific and involve rhizosphere enzyme activities:evidence from a field study[J]. Soil Ecology Letters,2021,4(4):444-453.
[124]王吉秀,祖艳群,李元,等. 玉米和不同蔬菜间套模式对重金属Pb、Cu、Cd累积的影响研究[J]. 农业环境科学学报,2011,30(11):2168-2173.
[125]刘均霞,陆引罡,远红伟,等. 玉米、大豆间作对根际土壤微生物数量和酶活性的影响[J]. 贵州农业科学,2007,35(2):60-61,64.
[126]孟自力,叶美金,闫延梅,等. 间作大蒜对小麦根际土壤微生物数量及土壤酶活性的影响[J]. 农业资源与环境学报,2018,35(5):430-438.
[127]Yan Z Q,Li Y,Wu H D,et al. Different responses of soil hydrolases and oxidases to extreme drought in an alpine peatland on the Qinghai-Tibet Plateau,China[J]. European Journal of Soil Biology,2020,99:103195.
[128]Wang C L,Shi B K,Sun W,et al. Different forms and rates of nitrogen addition show variable effects on the soil hydrolytic enzyme activities in a meadow steppe[J]. Soil Research,2020,58(3):258.
[129]Yang J S,Yang F L,Yang Y,et al. A proposal of “core enzyme” bioindicator in long-term Pb-Zn ore pollution areas based on topsoil property analysis[J]. Environmental Pollution,2016,213:760-769.
[130]Amini Kiasari M,Pakbaz M S,Ghezelbash G R.Increasing of soil urease activity by stimulation of indigenous bacteria and investigation of their role on shear strength[J]. Geomicrobiology Journal,2018,35(10):821-828.
[131]Farooq T H,Kumar U,Mo J,et al. Intercropping of peanut–tea enhances soil enzymatic activity and soil nutrient status at different soil profiles in subtropical southern China[J]. Plants,2021,10(5):881.
[132]Ma Y H,Fu S L,Zhang X P,et al. Intercropping improves soil nutrient availability,soil enzyme activity and tea quantity and quality[J]. Applied Soil Ecology,2017,119:171-178.
[133]Watanabe K,Hayano K. Source of soil protease in paddy fields[J]. Canadian Journal of Microbiology,1993,39(11):1035-1040.
[134]张威,张明,张旭东,等. 土壤蛋白酶和芳香氨基酶的研究进展[J]. 土壤通报,2008,39(6):1468-1474.
[135]王玉新,王天竺,高平,等. 薰衣草间作两种十字花科蔬菜对土壤酶活性的影响[J]. 中国林副特产,2020(6):25-27.
[136]颜彩缤,胡福初,王彩霞,等. 槟榔-平托花生间作对土壤养分和土壤酶活性的影响[J]. 热带农业科学,2020,40(11):14-22.
[137]Gu C H,Wilson S G,Margenot A J. Lithological and bioclimatic impacts on soil phosphatase activities in California temperate forests[J]. Soil Biology and Biochemistry,2020,141:107633.
[138]Leite M V M,Bobulská L,Espíndola S P,et al. Modeling of soil phosphatase activity in land use ecosystems and topsoil layers in the Brazilian Cerrado[J]. Ecological Modelling,2018,385:182-188.
[139]Presti E L,Badagliacca G,Romeo M,et al. Does legume root exudation facilitate itself P uptake in intercropped wheat?[J]. Journal of Soil Science and Plant Nutrition,2021,21(4):3269-3283.
[140]Qin X M,Pan H N,Xiao J X,et al. Increased nodular P level induced by intercropping stimulated nodulation in soybean under phosphorus deficiency[J]. Scientific Reports,2022,12:1991.
[141]de Souza Soares A,Augusto P E D,de Castro Leite B R Jr,et al. Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase:investigation on substrate,enzyme and kinetics parameters[J]. LWT,2019,107:164-170.
[142]Gao J X,Xie H. Daylily intercropping:effects on soil nutrients,enzyme activities,and microbial community structure[J]. Frontiers in Plant Science,2023,14:1107690.
[143]陈伟,孙从建,李卫红. 低氮胁迫下苦荞根际土壤纤维素酶活性的响应机制:荧光光谱法测定[J]. 光谱学与光谱分析,2018,38(10):3159-3162.
[144]韩春梅,李春龙,叶少平,等. 不同栽培模式对生姜大田土壤酶活性及土壤养分的动态影响[J]. 北方园艺,2016(4):163-167.
[145]黄田田. 饲用油菜高丹草间作结合施肥对饲草产质量及土壤有机碳组分的影响[D]. 呼和浩特:内蒙古农业大学,2020:31-32.
[146]袁婷婷,赵骞,董艳. 阿魏酸胁迫下间作对蚕豆枯萎病发生和根系组织结构的影响[J]. 土壤学报,2021,58(4):1060-1071.
[147]常学秀,文传浩,沈其荣,等. 锌厂Pb污染农田小麦根际与非根际土壤酶活性特征研究[J]. 生态学杂志,2001,20(4):5-8.
[148]郑晓媛. 桑树/大豆间作的种间关系及其土壤磷酸酶变化[D]. 哈尔滨:东北林业大学,2011:41.
[149]张智晖. 玉米/大豆间作模式对土壤酶活性及土壤养分的影响[J]. 安徽农业科学,2011,39(16):9706-9707.
[150]于路,黄宇婷,张奎,等. 间作紫花苜宿促进苹果园土壤氮循环的机制[J]. 北京农学院学报,2023,38 (3):34-39.
[151]代真林,汪娅婷,姚秀英,等. 玉米大豆间作模式对玉米根际土壤微生物群落特征、玉米产量及病害的影响[J]. 云南农业大学学报(自然科学),2020,35(5):756-764.
[152]Cheng G L,Liu H,Wang Q H.Effects of EDTA,EDDS and oxalic acid on catalase and peroxydase activities of soil[J]. Advanced Materials Research,2011,322:39-42.
[153]Wu C F,Liu J,Xia D,et al. Effects of grape seedlings intercropping with post-grafting generation of two floricultural accumulator plants on soil enzymes activity under cadmium stress[J]. IOP Conference Series:Earth and Environmental Science,2019,233:042017.
[154]Zhou X G,Yu G B,Wu F Z.Effects of intercropping cucumber with onion or garlic on soil enzyme activities,microbial communities and cucumber yield[J]. European Journal of Soil Biology,2011,47(5):279-287.
[155]崔爱花,孙亮庆,刘帅,等. 棉花产量和土壤微生物数量及酶活性对棉田间作系统的响应[J]. 江苏农业科学,2022,50(2):53-58.
[156]覃潇敏,黄少欣,韦锦坚,等. 茶树/大豆间作对茶树土壤和茶叶营养品质的影响[J]. 华北农学报,2019,34(增刊1):129-135.
[157]韦持章,农玉琴,陈远权,等. 茶树/大豆间作对根际土壤微生物群落及酶活性的影响[J]. 西北农业学报,2018,27(4):537-544.
[158]文亚雄. 林农间作油茶林土壤微生物多样性研究[D]. 长沙:中南林业科技大学,2015:36-37.
[159]朱国政. AMF对金橘大豆间作体系中金橘生长及根际土微生物多样性的影响[D]. 桂林:广西师范大学,2015:33.
[160]范虹,赵财,胡发龙,等. 土壤含水量、种植模式和丁香酚对土壤微生物种群结构的影响[J]. 中国沙漠,2019,39(2):13-18.
[161]李梦辉,张瑞花,朱军,等. 不同间隔方式作用下香蕉、辣椒的间作效应[J]. 分子植物育种,2017,15 (3):1156-1163.
[162]张海春,张浩,胡晓辉. 不同间作模式对温室连作番茄产量、土壤微生物和酶的影响[J]. 西北农业学报,2016,25(8):1218-1223.
[163]吕慧芳,别之龙. 间作小麦对西瓜生长及根际土壤酶和微生物的影响[J]. 中国瓜菜,2019,32(6):32-37.
[164]张亮亮,罗明,徐金虹,等. 南疆枣树棉花间作对土壤微生物生物量碳、氮的影响[J]. 新疆农业大学学报,2015,38(3):216-223.
[165]王庆宇,李立军,阮慧,等. 旱地燕麦间作对土壤酶活性、微生物含量及产量的影响[J]. 干旱地区农业研究,2019,37(2):179-184.
[166]马琨,杨桂丽,马玲,等. 间作栽培对连作马铃薯根际土壤微生物群落的影响[J]. 生态学报,2016,36(10):2987-2995.
[167]牛宇,薄晓峰,秦作霞,等. 间作豆类作物对大樱桃生长和土壤特性、微生物数量的影响[J]. 北方园艺,2019(4):38-44.
[168]杜春凤. 马铃薯/玉米间作栽培对土壤和作物的影响[D]. 银川:宁夏大学,2017:23.
[169]张萌萌,敖红,李鑫,等. 桑树/苜蓿间作对根际土壤酶活性和微生物群落多样性的影响[J]. 草地学报,2015,23(2):302-309.
[170]逄好胜,胡举伟,李鑫,等. 小麦-苜蓿间作对土壤微生物群落功能多样性的影响[J]. 贵州农业科学,2015,43(8):160-164.
[171]白鹏华,刘奇志,张林林,等. 南疆土壤线虫及微生物对枣树与绿豆间作种植方式的响应[J]. 西北农业学报,2015,24(2):104-110.
[172]夏枫. 施肥与间作对设施蔬菜大棚土壤养分及微生物变化影响的研究[D]. 海口:海南大学,2017:44-45.
[173]董宇飞,吕相漳,张自坤,等. 不同栽培模式对辣椒根际连作土壤微生物区系和酶活性的影响[J]. 浙江农业学报,2019,31(9):1485-1492.
[174]谭礼宁. 谷子/花生盆栽间作蛋白质组学及根际微生物区系研究[D]. 福州:福建农林大学,2015:78-79.
[175]邓文,胡兴明,于翠,等. 桑树间作大豆对桑园土壤微生物多样性的影响[J]. 蚕业科学,2015,41(6):997-1003.
[176]乔旭. 丛枝菌根真菌在植物种间互作中的调节机 制[D]. 北京:中国农业大学,2016:82.
[177]王光州. 土壤微生物调节植物种间互作和多样性—生产力关系的机制[D]. 北京:中国农业大学,2018:88-93.

相似文献/References:

[1]李岳峰,居立海,张来运,等.水分胁迫下丛枝菌根对水稻/绿豆间作系统 作物生长和氮磷吸收的影响[J].江苏农业科学,2013,41(04):58.
[2]王新华,尚赏,郭书亚,等.2BX型玉米/甘薯间作系统优势分析[J].江苏农业科学,2014,42(10):106.
 Wang Xinhua,et al.Superiority analysis of 2BX type corn/sweet potato intercropping system[J].Jiangsu Agricultural Sciences,2014,42(2):106.
[3]余莉琳,裴宗平,常晓华,等.干旱胁迫及复水对4种矿区生态修复草本植物生理特性的影响[J].江苏农业科学,2013,41(07):362.
 Yu Lilin,et al.Effects of drought stress and rewatering on physiological characteristics of several herbaceous plants with ecological restoration function[J].Jiangsu Agricultural Sciences,2013,41(2):362.
[4]叶珺琳,郭国保,潘春香,等.间种芳香植物对蔬菜生长及虫害的影响[J].江苏农业科学,2014,42(08):143.
 Ye Junlin,et al.Effect of intercropping aromatic plants on growth and insects of vegetable[J].Jiangsu Agricultural Sciences,2014,42(2):143.
[5]李红,唐永金,曾峰.高浓度锶、铯胁迫对植物叶绿素荧光特性的影响[J].江苏农业科学,2013,41(09):349.
 Li Hong,et al.Effects of high concentrations of strontium and cesium on chlorophyll fluorescence characteristics of plants[J].Jiangsu Agricultural Sciences,2013,41(2):349.
[6]巩子路,田童童,朱新荣,等.植物铁蛋白钙复合物的制备[J].江苏农业科学,2013,41(11):292.
 Gong Zilu,et al.Preparation of plant ferritin-calcium complexes[J].Jiangsu Agricultural Sciences,2013,41(2):292.
[7]赵妍,王旭和,韩春刚,等.8种观赏植物净化污水中总氮、总磷效果及景观配置[J].江苏农业科学,2013,41(12):348.
 Zhao Yan,et al.Purification effect of eight kinds of ornamental plants on total nitrogen and total phosphorus in domestic sewage and their landscape design[J].Jiangsu Agricultural Sciences,2013,41(2):348.
[8]熊军,闫海锋,韦绍丽,等.木薯+花生间作对作物光合特性、农艺性状和产量的影响[J].江苏农业科学,2016,44(06):165.
 Xiong Jun,et al.Effects of cassava and peanut intercropping on photosynthesis characteristics, agronomic traits and yield of crops[J].Jiangsu Agricultural Sciences,2016,44(2):165.
[9]郭义红,孙威江,林伟东,等.植物DNA条形码鉴定研究进展[J].江苏农业科学,2016,44(07):19.
 Guo Yihong,et al.Research progress of plant Identification by DNA barcoding[J].Jiangsu Agricultural Sciences,2016,44(2):19.
[10]陈露,杨立明,罗玉明.植物ICE蛋白基因家族的系统进化分析[J].江苏农业科学,2016,44(02):42.
 Chen Lu,et al.Phylogenetic analysis of ICE protein gene family in plants[J].Jiangsu Agricultural Sciences,2016,44(2):42.

备注/Memo

备注/Memo:
收稿日期:2023-04-06
基金项目:崇左市科技计划(编号:崇科FA2018005)。
作者简介:欧阳子龙(1997—),男,湖北天门人,硕士,主要从事园林植物资源及应用研究。E-mail:1627132117@qq.com。
通信作者:滕维超,博士,副教授,主要从事园林植物资源及应用研究。E-mail:119754446@qq.com。
更新日期/Last Update: 2024-01-20