|本期目录/Table of Contents|

[1]朱宗财,王志军,高能,等.CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述[J].江苏农业科学,2024,52(3):1-11.
 Zhu Zongcai,et al.Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review[J].Jiangsu Agricultural Sciences,2024,52(3):1-11.
点击复制

CRISPR/Cas9基因编辑技术在植物抗病性改良中的应用综述(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第3期
页码:
1-11
栏目:
专论与综述
出版日期:
2024-02-20

文章信息/Info

Title:
Application of CRISPR/Cas9 gene editing technology in improvement of plant disease resistance:a review
作者:
朱宗财王志军高能武冬梅
新疆农垦科学院生物技术研究所/作物种质创新与基因资源利用兵团重点实验室,新疆石河子 832000
Author(s):
Zhu Zongcaiet al
关键词:
CRISPR/Cas9基因编辑技术植物抗病性抗病性改良抗病育种
Keywords:
-
分类号:
S432.1
DOI:
-
文献标志码:
A
摘要:
植物病害是影响作物生长的重要因素之一,对世界粮食安全构成很大的威胁,培育优良的抗病品种成为最优策略。CRISPR/Cas9基因编辑技术自问世以来备受关注,因该系统简单、高效、稳定的特点,逐渐成为分子育种领域重要的技术手段。本综述简单回顾了CRISPR/Cas9基因编辑技术的技术原理和在植物中的应用情况,系统总结了该技术在植物抗真菌、细菌和病毒方面的应用。还列举了可用于提高植物抗病性的基因位点以及真菌、细菌和病毒等病原物的致病相关基因位点编辑应用情况,探讨了该技术主要的优势和不足,以及未来应用的前景和挑战,以期为今后研究提供参考和借鉴。
Abstract:
-

参考文献/References:

[1]Serge S,Laetitia W. Modeling the impact of crop diseases on global food security[J]. Annual Review of Phytopathology,2020,58(1):313-341.
[2]Liu X R,Ao K,Yao J,et al. Engineering plant disease resistance against biotrophic pathogens[J]. Current Opinion in Plant Biology,2021,60:101987.
[3]Kang S,Lumactud R,Li N X,et al. Harnessing chemical ecology for environment-friendly crop protection[J]. Phytopathology,2021,111(10):1697-1710.
[4]周蒙. 中国生物农药发展的现实挑战与对策分析[J]. 中国生物防治学报,2021,37(1):184-192.
[5]Dangl J L,Horvath D M,Staskawicz B J. Pivoting the plant immune system from dissection to deployment[J]. Science,2013,341(6147):746-751.
[6]朱宗财. 烟草NtRBP45在烟草花叶病毒侵染寄主过程中的功能研究[D]. 阿拉尔:塔里木大学,2020:7.
[7]赖昕彤,王柯岚,由雨欣,等. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报,2022,38(6):1-12.
[8]Chen K L,Wang Y P,Zhang R,et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology,2019,70:667-697.
[9]陈修贵. CRISPR/Cas9系统介导的棉花GhCLA1GhVP基因编辑的研究[D]. 武汉:华中农业大学,2017:2.
[10]Nishimasu H,Ran F A,Hsu P D,et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell,2014,156(5):935-949.
[11]Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821.
[12]Cong L,Ran F A,Cox D,et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science,2013,339(6121):819-823.
[13]Gupta D,Bhattacharjee O,Mandal D,et al. CRISPR-Cas9 system:a new-fangled dawn in gene editing[J]. Life Sciences,2019,232:116636.
[14]李江,耿立召,许建平. CRISPR/Cas9系统中引导RNA的研究进展[J]. 生物技术通报,2019,35(4):108-115.
[15]Jiang F G,Doudna J A. CRISPR-Cas9 structures and mechanisms[J]. Annual Review of Biophysics,2017,46:505-529.
[16]Ma Y W,Zhang L F,Huang X X. Genome modification by CRISPR/Cas9[J]. The FEBS Journal,2014,281(23):5186-5193.
[17]Zhang Y L,Ma X L,Xie X R,et al. CRISPR/Cas9-based genome editing in plants[J]. Progress in Molecular Biology and Translational Science,2017,149:133-150.
[18]Ma X L,Zhu Q L,Chen Y L,et al. CRISPR/Cas9 platforms for genome editing in plants:developments and applications[J]. Molecular Plant,2016,9(7):961-974.
[19]景润春,卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学,2016,49(7):1219-1229.
[20]Ma X L,Zhang Q Y,Zhu Q L,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8(8):1274-1284.
[21]Yang Y H,Xu C D,Shen Z Y,et al. Crop quality improvement through genome editing strategy[J]. Frontiers in Genome Editing,2022,3:819687.
[22]Svitashev S,Young J K,Schwartz C,et al. Targeted mutagenesis,precise gene editing,and site-specific gene insertion in maize using Cas9 and guide RNA[J]. Plant Physiology,2015,169(2):931-945.
[23]Begemann M B,Gray B N,January E,et al. Precise insertion and guided editing of higher plant genomes using Cpf1 CRISPR nucleases[J]. Scientific Reports,2017,7:11606.
[24]Wang M G,Lu Y M,Botella J R,et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system[J]. Molecular Plant,2017,10(7):1007-1010.
[25]Zaynab M,Sharif Y,Fatima M,et al. CRISPR/Cas9 to generate plant immunity against pathogen[J]. Microbial Pathogenesis,2020,141:103996.
[26]Ndvig C S,Nielsen J B,Kogle M E,et al. A CRISPR-Cas9 system for genetic engineering of filamentous fungi[J]. PLoS One,2015,10(7):e0133085.
[27]Matsu-Ura T,Baek M,Kwon J,et al. Efficient gene editing in Neurospora crassa with CRISPR technology[J]. Fungal Biology and Biotechnology,2015,2(1):1-7.
[28]Wang F J,Wang C L,Liu P Q,et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One,2016,11(4):e0154027.
[29]Nawaz G,Usman B,Peng H W,et al. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line[J]. Genes,2020,11(7):735.
[30]Zhou Y B,Xu S C,Jiang N,et al. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/Cas9[J]. Plant Biotechnology Journal,2022,20(5):876-885.
[31]Wang N,Tang C L,Fan X,et al. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi[J]. Cell,2022,185(16):2961-2974.
[32]Lin F,Zhao M X,Baumann D D,et al. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics[J]. BMC Genomics,2014,15(1):1-13.
[33]Fan S J,Zhang Z,Song Y,et al. CRISPR/Cas9-mediated targeted mutagenesis of GmTCP19L increasing susceptibility to Phytophthora sojae in soybean[J]. PLoS One,2022,17(6):e0267502.
[34]Hong Y H,Meng J,He X L,et al. Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to Phytophthora infestans[J]. Phytopathology,2021,111(6):1008-1016.
[35]Moon K B,Park S J,Park J S,et al. Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato[J]. Frontiers in Plant Science,2022,13:997888.
[36]Sauter M. Phytosulfokine peptide signalling[J]. Journal of Experimental Botany,2015,66(17):5161-5169.
[37]Hammes U Z. Novel roles for phytosulfokine signalling in plant–pathogen interactions[J]. Plant,Cell & Environment,2016,39(7):1393-1395.
[38]Zhang M,Liu Q L,Yang X P,et al. CRISPR/Cas9-mediated mutagenesis of Clpsk1 in watermelon to confer resistance to Fusarium oxysporum f. sp. niveum[J]. Plant Cell Reports,2020,39(5):589-595.
[39]Zhang Z N,Ge X Y,Luo X L,et al. Simultaneous editing of two copies of Gh14-3-3d confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton[J]. Frontiers in Plant Science,2018,9:842.
[40]Mishra R,Mohanty J N,Mahanty B,et al. A single transcript CRISPR/Cas9 mediated mutagenesis of CaERF28 confers anthracnose resistance in chilli pepper (Capsicum annuum L.)[J]. Planta,2021,254(1):5.
[41]Haseena K,McDonald Megan C,Williams Simon J,et al. Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum[J]. Fungal Biology and Biotechnology,2020,7(1):4.
[42]Liang Y F,Han Y,Wang C F,et al. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system[J]. Frontiers in Plant Science,2018,9:699.
[43]Fang Y F,Cui L K,Gu B,et al. Efficient genome editing in the oomycete Phytophthora sojae using CRISPR/Cas9[J]. Current Protocols in Microbiology,2017,44(1):21A.1.1-21A.1.26.
[44]Borges-Walmsley M I,Walmsley A R. cAMP signalling in pathogenic fungi:control of dimorphic switching and pathogenicity[J]. Trends in Microbiology,2000,8(3):133-141.
[45]Li X,Liu Y,Tan X Q,et al. The high-affinity phosphodiesterase PcPdeH is involved in the polarized growth and pathogenicity of Phytophthora capsici[J]. Fungal Biology,2020,124(3/4):164-173.
[46]Gordon T R. Fusarium oxysporum and the Fusarium wilt syndrome[J]. Annual Review of Phytopathology,2017,55:23-39.
[47]Wang Q,Coleman J J. CRISPR/Cas9-mediated endogenous gene tagging in Fusarium oxysporum[J]. Fungal Genetics and Biology,2019,126:17-24.
[48]郭泽建,侯明生. 中国植物病理学会2011年学术年会论文集[C]. 北京:中国农业科学技术出版社,2011:265.
[49]Ortigosa A,Gimenez-Ibanez S,Leonhardt N,et al. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2[J]. Plant Biotechnology Journal,2019,17(3):665-673.
[50]Pompili V,Dalla Costa L,Piazza S,et al. Reduced fire blight susceptibility in apple cultivars using a high-efficiency CRISPR/Cas9-FLP/FRT-based gene editing system[J]. Plant Biotechnology Journal,2020,18(3):845-858.
[51]Kim Y A,Moon H,Park C J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae[J]. Rice,2019,12(1):1-13.
[52]Zafar K,Khan M Z,Amin I,et al. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene[J]. Frontiers in Plant Science,2020,11:575.
[53]Zeng X,Luo Y F,Vu N T Q,et al. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty[J]. BMC Plant Biology,2020,20(1):1-11.
[54]Peng A H,Chen S C,Lei T G,et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal,2017,15(12):1509-1519.
[55]Jia H G,Omar A A,Orbovic' V,et al. Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-resistant ‘Duncan’ grapefruit[J]. Phytopathology,2022,112(2):308-314.
[56]Tripathi L,Tripathi J N,Shah T,et al. Molecular basis of disease resistance in banana progenitor Musa balbisiana against Xanthomonas campestris pv. musacearum[J]. Scientific Reports,2019,9(1):7007.
[57]Tripathi J N,Ntui V O,Shah T,et al. CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease[J]. Plant Biotechnology Journal,2021,19(7):1291-1293.
[58]Huang X E,Wang Y C,Wang N.Highly efficient generation of canker-resistant sweet orange enabled by an improved CRISPR/Cas9 system[J]. Frontiers in Plant Science,2022,12:769907.
[59]Li C Y,Li W,Zhou Z H,et al. A new rice breeding method:CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice[J]. Plant Biotechnology Journal,2020,18(2):313-315.
[60]Martí E S. CRISPR/Cas9 system optimization in Pseudomona syringae using a heterologous repair system[J]. Biosaia,2020,9:1.
[61]Zhang N,He J T,Muhammad A,et al. CRISPR/Cas9-mediated genome editing for Pseudomonas fulva,a novel Pseudomonas species with clinical,animal,and plant-associated isolates[J]. International Journal of Molecular Sciences,2022,23(10):5443.
[62]Jiang D D,Zhang D D,Li S N,et al. Highly efficient genome editing in Xanthomonas oryzae pv. oryzae through repurposing the endogenous type I-C CRISPR-Cas system[J]. Molecular Plant Pathology,2022,23(4):583-594.
[63]沈川,李夏,吴云锋. CRISPR/Cas基因编辑系统在植物抗病毒防御中的应用[J]. 植物病理学报,2023,53(3):343-357.
[64]Yoon Y J,Venkatesh J,Lee J H,et al. Genome editing of eIF4E1 in tomato confers resistance to pepper mottle virus[J]. Frontiers in Plant Science,2020,11:1098.
[65]Kan J H,Cai Y,Cheng C Y,et al. CRISPR/Cas9-guided knockout of eIF4E improves wheat yellow mosaic virus resistance without yield penalty[J]. Plant Biotechnology Journal,2023,21(5):893-895.
[66]Le N T,Tran H T,Bui T P,et al. Simultaneously induced mutations in eIF4E genes by CRISPR/Cas9 enhance PVY resistance in tobacco[J]. Scientific Reports,2022,12(1):14627.
[67]Ludman M,Burgyán J,Fátyol K. Crispr/Cas9 mediated inactivation of argonaute 2 reveals its differential involvement in antiviral responses[J]. Scientific Reports,2017,7(1):1-12.
[68]Ishikawa M,Yoshida T,Matsuyama M,et al. Tomato brown rugose fruit virus resistance generated by quadruple knockout of homologs of TOBAMOVIRUS MULTIPLICATION1 in tomato[J]. Plant Physiology,2022,189(2):679-686.
[69]何青云,刘笑玮,焦裕冰,等. 烟草NbbZIP28突变体的创建及其对病毒侵染胁迫的响应[J]. 中国农业科学,2018,51(14):2689-2699.
[70]Pramanik D,Shelake R M,Park J,et al. CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew[J]. International Journal of Molecular Sciences,2021,22(4):1878.
[71]Hinge V R,Chavhan R L,Kale S P,et al. Engineering resistance against viruses in field crops using CRISPR-Cas9[J]. Current Genomics,2021,22(3):214-231.
[72]Yin K Q,Han T,Xie K,et al. Engineer complete resistance to cotton leaf curl multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana[J]. Phytopathology Research,2019,1(1):1-9.
[73]Ghorbani Faal P,Farsi M,Seifi A,et al. Virus-induced CRISPR-Cas9 system improved resistance against tomato yellow leaf curl virus[J]. Molecular Biology Reports,2020,47(5):3369-3376.
[74]Ali Z,Abulfaraj A,Idris A,et al. CRISPR/Cas9-mediated viral interference in plants[J]. Genome Biology,2015,16(1):238.
[75]Ji X,Zhang H W,Zhang Y,et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants[J]. Nature Plants,2015,1:15144.
[76]Baltes N J,Hummel A W,Konecna E,et al. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system[J]. Nature Plants,2015,1:15145.
[77]Kis A,Hamar é,Tholt G,et al. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system[J]. Plant Biotechnology Journal,2019,17(6):1004-1006.
[78]Malik M A M,Haider M S,Zhai Y,et al. Towards developing resistance to chickpea chlorotic dwarf virus through CRISPR/Cas9-mediated gene editing using multiplexed gRNAs[J]. Journal of Plant Diseases and Protection,2023,130(1):23-33.
[79]Zhang T,Zheng Q F,Yi X,et al. Establishing RNA virus resistance in plants by harnessing CRISPR immune system[J]. Plant Biotechnology Journal,2018,16(8):1415-1423.
[80]Jiao B,Hao X,Liu Z,et al. Engineering CRISPR immune systems conferring GLRaV-3 resistance in grapevine[J]. Horticulture Research,2022,9:uhab023.
[81]夏雄飞,潘俊良,韩长志. CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J]. 江苏农业科学,2022,50(12):22-27.
[82]Swati T,Robin K,Vivak K,et al. Engineering disease resistant plants through CRISPR-Cas9 technology[J]. GM Crops & Food,2021,12(1):125-144.
[83]Borrelli V M G,Brambilla V,Rogowsky P,et al. The enhancement of plant disease resistance using CRISPR/Cas9 technology[J]. Frontiers in Plant Science,2018,9:1245.

相似文献/References:

[1]徐继法,徐艳,赵吉强,等.CRISPR/Cas9系统及其在单子叶植物中的应用[J].江苏农业科学,2017,45(18):21.
 Xu Jifa,et al.CRISPR/Cas9 system and its application in monocot:a review[J].Jiangsu Agricultural Sciences,2017,45(3):21.
[2]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(3):34.
[3]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(3):19.
[4]李莉,任红艳,毕延震,等.基因编辑技术的新进展及展望[J].江苏农业科学,2018,46(23):5.
 Li Li,et al.New progress and prospect of gene editing technology[J].Jiangsu Agricultural Sciences,2018,46(3):5.
[5]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(3):5.
[6]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(3):29.
[7]曹兴林,恽君雯,陈丽,等.基于CRISPR/Cas9系统的MDCK细胞IFN-β1编码序列的敲除[J].江苏农业科学,2020,48(07):59.
 Cao Xinglin,et al.Knockout of IFN-β1 in MDCK cells based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(3):59.
[8]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49.
 Li Xingkun,et al.Construction of Arabidopsis ugt84a1/ugt84a2 double mutant and analysis of mutation site based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(3):49.
[9]张二豪,张杰.CRISPR/Cas9基因编辑技术应用于绿僵菌[J].江苏农业科学,2021,49(11):48.
 Zhang Erhao,et al.CRISPR/Cas9-mediated genome editing in Metarhizium acridum[J].Jiangsu Agricultural Sciences,2021,49(3):48.
[10]齐世杰,赵静娟,郑怀国.基于ESI的全球作物生物育种领域研究前沿分析[J].江苏农业科学,2021,49(19):9.
 Qi Shijie,et al.Research frontier analysis of global crop biological breeding based on ESI[J].Jiangsu Agricultural Sciences,2021,49(3):9.

备注/Memo

备注/Memo:
收稿日期:2023-03-27
基金项目:新疆生产建设兵团重点领域科技攻关计划(编号:2021AB004);新疆农垦科学院院级项目(编号:03110004)
作者简介:朱宗财(1994—),男,甘肃皋兰人,硕士,助理研究员,主要从事植物病理学研究。E-mail:826610782@qq.com。
通信作者:武冬梅,博士,副研究员,主要从事应用微生物学及生物技术应用研究。E-mail:wdm0999123@sina.com。
更新日期/Last Update: 2024-03-05