|本期目录/Table of Contents|

[1]马斯霜,白海波,惠建,等.CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J].江苏农业科学,2019,47(20):29-33.
 Ma Sishuang,et al.Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review[J].Jiangsu Agricultural Sciences,2019,47(20):29-33.
点击复制

CRISPR/Cas9技术及其在水稻和小麦
遗传改良中的应用综述
(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第47卷
期数:
2019年第20期
页码:
29-33
栏目:
专论与综述
出版日期:
2019-11-18

文章信息/Info

Title:
Application of CRISPR/Cas9 technology in rice and wheat genetic improvement:a review
作者:
马斯霜 白海波 惠建 吕学莲 陈晓军 李树华
宁夏农林科学院农业生物技术研究中心,宁夏银川 750002
Author(s):
Ma Sishuanget al
关键词:
CRISPR/Cas9基因编辑遗传改良水稻小麦
Keywords:
-
分类号:
Q789
DOI:
-
文献标志码:
A
摘要:
CRISPR/Cas9技术是新发展的定向基因编辑技术,CRISPR/Cas9技术是在细菌和古细菌中发现的1种抵御外来病毒及质粒入侵的获得性免疫系统。CRISPR/Cas9技术由sgRNA(单向导RNA)介导,与Cas9核酸酶切割实现作物定点编辑改良。本文主要对CRISPR/Cas9技术的工作原理、系统分类、结构、系统构建方法进行了系统介绍。同时,总结了CRISPR/Cas9技术在水稻和小麦的突变体库的建立和基因功能研究、品质和农艺性状遗传改良等方面的研究。并对CRISPR/Cas9技术对作物进行定向编辑改良进行了展望,以期为利用CRISPR/Cas9技术创制新品种、作物品种改良提供参考。
Abstract:
-

参考文献/References:

[1]何维达. 我国粮食安全面临的挑战及对策[J]. 南方农业,2014,35(8):23-25.
[2]赵波,张余,张雨良.CRISPR/Cas9系统在植物育种中的应用[J]. 热带作物学报,2018,39(1):197-207.
[3]Lo T W,Pickle C S,Lin S,et al. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions[J]. Genetics,2013,195(2):331-348.
[4]Wood A J,Lo T W,Zeitler B,et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science,2011,333(6040):307.
[5]Doudna J A,Charpentier E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[6]Bortesi L,Fischer R. The CRISPR/Cas 9 system for plant genome editing and beyond[J]. Biotechnology Advances,2015,33(1):41-52.
[7]Gaj T,Gersbach C A,Barbas C Z. TALEN,and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology,2013,31(7):397-405.
[8]Wang Z,Xing H,Dong L,et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single Generation[J]. Genome Biology,2015,16(1):144.
[9]王红霞,张一卉,李景娟,等. CRISPR/Cas9系统介导的植物基因组编辑及其应用[J]. 山东农业科学,2018,50(2):143-150.
[10]Jiang W Z,Henry I M,Lynagh P G,et al. Significant enhancement of fatty acid composition in seeds of the allohexaploid,Camelina sativa,using CRISPR/Cas9 gene editing[J]. Plant Biotechnology Journal,2017,15(5):648-657.
[11]Barrangou R,Oost J V D. CRISPR-Cas systems:RNA-directed adaptive immunity in bacteria and archaea[M]. Berlin:Springer,2013.
[12]Hagen R,Lennart R,Andre A. Exploiting CRISPR/Cas:interference mechanisms and applications[J]. International Journal of Molecular Sciences,2013,14(7):14518-14531.
[13]Sorek R,Kunin V,Hugenholtz P. CRISPR-a widespread system that provides acquired resistance against phages in bacteria and archaea[J]. Nature Reviews Microbiology,2008,6(3):181-186.
[14]Belhaj K,Chaparro-Garcia A,Kamoun S A,et al. Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology,2015,32:76-84.
[15]Terns M P,Terns R M . CRISPR-based adaptive immune systems[J]. Current Opinion in Microbiology,2011,14(3):321-327.
[16]Garneau J E,Dupuis M E,Villion M,et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA[J]. Nature,2010,468(7320):67-71.
[17]Jinek M,Chylinski K,Fonfara I,et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(696):816-821.
[18]Hale C R,Majumdar S,Elmore J,et al. Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs[J]. Molecular Cell,2012,45(3):292-302.
[19]Sashital D G,Wiedenheft B,Doudna J A. Mechanism of foreign DNA selection in a bacterial adaptive immune system[J]. Molecular Cell,2012,46(5):606-615.
[20]李君,张毅,陈坤玲,等. CRISPR/Cas系统:RNA靶向的基因组定向编辑新技术[J]. 遗传,2013,35(11):1265-1273.
[21]Doudna J A,Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science,2014,346(6213):1258096.
[22]刘志国. CRISPR/Cas9系统介导基因组编辑的研究进展[J]. 畜牧兽医学报,2014,45(10):1567-1583.
[23]景润春,卢洪. CRISPR/Cas9基因组定向编辑技术的发展与在作物遗传育种中的应用[J]. 中国农业科学,2016,49(7):1219-1229.
[24]Mali P,Yang L H,Esvelt K M,et al. RNA-Guided human genome engineering via Cas9[J]. Science,2013,339(6121):823-826.
[25]沈春修,却志群,刘莹,等. CRISPR-Cas定点编辑水稻LOC_Os05g31750基因位点及靶修饰位点遗传稳定性研究[J]. 核农学报,2018,32(6):1041-1049.
[26]沈兰,华宇峰,付亚萍,等. 利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J]. 中国科学(生命科学),2017,47(11):1186-1195.
[27]原文霞,王栩鸣,李冬月,等. 利用CRISPR/Cas9技术靶向编辑水稻基因[J]. 浙江农业学报,2017,29(5):685-693.
[28]杨绍华,陈惠妹,周淑芬. 利用CRISPR/CAS9技术定点编辑水稻花粉特异表达基因OsIPA[J]. 福建农业学报,2017,32(11):1173-1177.
[29]Mao Y F,Zhang H,Xu N F,et al. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Molecular Plant,2013,6(6):2008-2011.
[30]Xie K,Yang Y. RNA-guided genome editing in plants using CRISPR-Cas system[J]. Molecular Plant,2013,6(6):1975-1983.
[31]Feng Z,Zhang B,Ding W,et al. Efficient genome editing in plants using a CRISPR/Cas system[J]. Cell Research,2013,23(10):1229-1232.
[32]胡雪娇,杨佳,程灿,等. 利用CRISPR/Cas9系统定向编辑水稻SD1基因[J]. 中国水稻科学,2018,32(3):219-225.
[33]冯璇,王新,韩悦,等. CRISPR/Cas9介导基因组编辑培育糯稻不育系WX209A[J]. 基因组学与应用生物学,2018,37(4):1589-1596.
[34]汪秉琨,张慧,洪汝科,等. CRISPR/Cas9系统编辑水稻Wx基因[J]. 中国水稻科学,2018,32(1):35-42.
[35]Zhou H,He M,Li J,et al. Development of commercial thermo-sensitive genetic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 Editing System[J]. Scientific Reports,2016,6:37395.
[36]刘维,刘浩,董双玉,等. 利用CRISPR/Cas9技术创建OsCOL9水稻突变体[J]. 华北农学报,2017,32(4):42-48.
[37]邵高能,谢黎虹,焦桂爱,等. 利用CRISPR/CAS9技术编辑水稻香味基因Badh2[J]. 中国水稻科学,2017,31(2):216-222.
[38]白建江,张建明,朴钟泽,等. 应用CRISPR/Cas9系统编辑水稻SBE3基因获得高抗性淀粉水稻新品系[J]. 分子植物育种,2018,16(5):1510-1516.
[39]Wang F,Wang C,Liu P,et al. Enhanced rice blast resistance by CRISPR/Cas9 targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One,2016,11(4):e0154027.
[40]Xu R,Yang Y,Qin R,et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice[J]. Journal of Genetics and Genomics,2016,43(8):529-532.
[41]Shen L,Wang C,Fu Y P,et al. QTL editing confers opposing yield performance in different rice varieties[J]. Journal of Integrative Plant Biology,2018,60(2):89-93.
[42]韩娇,王莉,何蕊,等. CRISPR/Cas9系统构建的水稻OsPht基因突变体材料可用于养分转运评价[J]. 植物营养与肥料学报,2017,23(5):1359-1369.
[43]孟帅,徐鹏,张迎信,等. 利用 CRISPR/Cas9技术编辑粒长基因GS3改善粳稻花时[J]. 中国水稻科学,2018,32(2):119-127.
[44]沈兰,李健,付亚萍,等. 利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J]. 中国水稻科学,2017,31(3):223-231.
[45]Miao J,Guo D,Zhang J,et al. Targeted mutagenesis in rice using CRISPR-Cas system[J]. Cell Research,2013,23(10):1233-1236.
[46]Li M,Li X,Zhou Z,et al. Reassessment of the four yield-related genes Gnla,DEP1,GS3,and IPA1 in rice using CRISPR/Cas9 system[J]. Frontiers in Plant Science,2016,7(12217):377.
[47]Uauy C. Wheat genomics comes of age[J]. Current Opinion in Plant Biology,2017,36:142-148.
[48]Yi Z,Zhen L,Yuan Z,et al. Efficient and trans gene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nature Communications,2016,7:12617.
[49]Shan Q W,Wang Y P,Li J,et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.
[50]Liang Z,Chen K,Zhang Y,et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins[J]. Nature protocols,2018,13(3):413-430.
[51]Bhowmik P,Ellison E,Polley B,et al. Targeted mutagenesis in wheat microspores using CRISPR/Cas9[J]. Scientific Reports,2018,8(1):6502.
[52]Liang Z,Chen K L,Li T D,et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes[J]. Nature Communications,2017,8:14261.
[53]Zhang Y,Liang Z,Zong Y,et al. Efficient and trans gene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nature Communications,2016,7:12617.
[54]Shan Q,Wang Y,Li J,et al. Genome editing in rice and wheat using the CRISPR/Cas system[J]. Nature Protocols,2014,9(10):2395-2410.

相似文献/References:

[1]尤双,曹洋,李村院,等.靶向兔肌肉生长抑制素基因CRISPR/Cas9载体的构建和活性分析[J].江苏农业科学,2018,46(06):34.
 You Shuang,et al.Construction and activity analysis of targeted CRISPR/Cas9 MSTN gene vector[J].Jiangsu Agricultural Sciences,2018,46(20):34.
[2]李莉梅,欧阳乐军,尹爱国,等.1种大片段敲除巨桉细胞分裂素氧化酶基因的CRISPR载体构建[J].江苏农业科学,2018,46(12):19.
 Li Limei,et al.Construction of eucalyptus genome editing vector by using CRISPR/Cas9 system and knockout Klenow fragment of cytokinin oxidase/dehydrogenase gene[J].Jiangsu Agricultural Sciences,2018,46(20):19.
[3]沈明晨,薛超,乔中英,等.CRISPR/Cas9系统在水稻中的发展和利用[J].江苏农业科学,2019,47(10):5.
 Shen Mingcheng,et al.Development and utilization of CRISPR/Cas9 system in rice[J].Jiangsu Agricultural Sciences,2019,47(20):5.
[4]曹兴林,恽君雯,陈丽,等.基于CRISPR/Cas9系统的MDCK细胞IFN-β1编码序列的敲除[J].江苏农业科学,2020,48(07):59.
 Cao Xinglin,et al.Knockout of IFN-β1 in MDCK cells based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(20):59.
[5]李鹏.利用CRISPR/Cas9系统编辑拟南芥ILR3基因及功能验证[J].江苏农业科学,2020,48(14):78.
 Li Peng.Editing gene ILR3 in Arabidopsis using CRISPR/Cas9 system and its function verification[J].Jiangsu Agricultural Sciences,2020,48(20):78.
[6]李星坤,潘慧,李攀,等.基于CRISPR/Cas9系统的拟南芥ugt84a1/ugt84a2双突变体制作及突变位点分析[J].江苏农业科学,2020,48(20):49.
 Li Xingkun,et al.Construction of Arabidopsis ugt84a1/ugt84a2 double mutant and analysis of mutation site based on CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2020,48(20):49.
[7]宋立晓,侯忠乐,任一鸣,等.利用PEI-SWNT介导的瞬时转化检测青花菜基因编辑效率[J].江苏农业科学,2021,49(13):56.
 Song Lixiao,et al.Detection of gene editing efficiency in broccoli by PEI-SWNT mediated transient transformation[J].Jiangsu Agricultural Sciences,2021,49(20):56.
[8]朱丽珍,王芳,王娅丽,等.基因编辑技术及CRISPR/Cas系统在草地植物开发中的应用[J].江苏农业科学,2021,49(20):22.
 Zhu Lizhen,et al.Application of gene editing technology and CRISPR/Cas system in development of grassland plants[J].Jiangsu Agricultural Sciences,2021,49(20):22.
[9]岳鹏,高海琴,李哲,等.2种常见CRISPR-Cas系统在苹果中的适用性特征[J].江苏农业科学,2022,50(7):43.
 Yue Peng,et al.Study on applicability of two common CRISPR-Cas systems in apple[J].Jiangsu Agricultural Sciences,2022,50(20):43.
[10]李胜男,刘伟,胡兴明,等.近现代中国水稻育种历程[J].江苏农业科学,2023,51(11):20.
 Li Shengnan,et al.History of rice breeding in modern and contemporary China[J].Jiangsu Agricultural Sciences,2023,51(20):20.
[11]张二豪,张杰.CRISPR/Cas9基因编辑技术应用于绿僵菌[J].江苏农业科学,2021,49(11):48.
 Zhang Erhao,et al.CRISPR/Cas9-mediated genome editing in Metarhizium acridum[J].Jiangsu Agricultural Sciences,2021,49(20):48.
[12]夏雄飞,潘俊良,韩长志.CRISPR/Cas9基因编辑技术在植物病原真菌中的应用研究进展[J].江苏农业科学,2022,50(12):22.
 Xia Xiongfei,et al.Research progress on application of CRISPR/Cas9 gene editing technology in plant pathogenic fungi[J].Jiangsu Agricultural Sciences,2022,50(20):22.
[13]闫强,胡亚群,薛冬,等.基于绿豆发状根的快速CRISPR/Cas9基因编辑方法[J].江苏农业科学,2023,51(10):48.
 Yan Qiang,et al.Rapid CRISPR/Cas9 gene editing method based on hairy roots of mung bean[J].Jiangsu Agricultural Sciences,2023,51(20):48.
[14]颜静宛,陈子强,周淑芬,等.利用CRISPR/Cas9系统创制水稻品种GW2基因的突变体[J].江苏农业科学,2024,52(3):73.
 Yan Jingwan,et al.Creation of mutants of GW2 gene in rice varieties using CRISPR/Cas9 system[J].Jiangsu Agricultural Sciences,2024,52(20):73.

备注/Memo

备注/Memo:
收稿日期:2018-07-09
基金项目:宁夏回族自治区农业育种专项(编号:2013NYYZ0202);科技创新引导科技攻关(编号:NXYG-18-06)。
作者简介:马斯霜(1992—),女,宁夏同心人,硕士,研究实习员,主要从事小麦、水稻生物技术育种方面的研究。E-mail:masishuang@163.com。
通信作者:李树华,研究员,主要从事小麦、水稻生物技术育种方面的研究。E-mail:shuhua.l@163.com。
更新日期/Last Update: 2019-10-20