|本期目录/Table of Contents|

[1]蒲欣,吴茂华,刘锋,等.芽孢杆菌对玉米真菌病害生物防治效果的研究进展[J].江苏农业科学,2024,52(4):23-30.
 Pu Xin,et al.Research progress on biological control effect of Bacillus on maize fungal diseases[J].Jiangsu Agricultural Sciences,2024,52(4):23-30.
点击复制

芽孢杆菌对玉米真菌病害生物防治效果的研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第4期
页码:
23-30
栏目:
专论与综述
出版日期:
2024-02-20

文章信息/Info

Title:
Research progress on biological control effect of Bacillus on maize fungal diseases
作者:
蒲欣吴茂华刘锋陈松任尧何兵
四川师范大学生命科学学院,四川成都 610101
Author(s):
Pu Xinet al
关键词:
芽孢杆菌玉米真菌病害生物防治抗菌物质研究进展
Keywords:
-
分类号:
S476;S435.131
DOI:
-
文献标志码:
A
摘要:
玉米是世界上三大粮食作物之一,对粮食安全有着重要影响。近年来,随着全球气候变化,耕作机制转变等原因,玉米病害流行,尤以真菌病害为主,严重降低玉米的产量和品质。常用的合成农药易造成环境污染且危害人类健康,而物理防治因成本高等问题防治效果不理想,生物防治因对环境友好等特点逐渐被应用于植物真菌病害防治,玉米主要依赖生防菌进行真菌病害的防治。木霉属、假单胞杆菌属、芽孢杆菌属等多种生防菌被发现具有良好的生防效果,其中芽孢杆菌因在自然界中分布广、能产生抗逆性较强的芽孢且能促进植物生长而被应用于植物病害的防治中。本文综述了玉米几种主要真菌病害的危害及芽孢杆菌应用于玉米叶斑病、穗腐病和纹枯病等真菌病害中的防效,总结了芽孢杆菌对空间和养分的竞争,抗生素、挥发性有机物等抗菌物质的生产和诱导植物抗性的生防机制研究进展,为生防菌剂的联合使用、提高抗菌物质产量提供研究思路。
Abstract:
-

参考文献/References:

[1]Bothast R J,Schlicher M A. Biotechnological processes for conversion of corn into ethanol[J]. Applied Microbiology and Biotechnology,2005,67(1):19-25.
[2]温胜慧,杨俊伟,王洋,等. 玉米抗真菌病害基因挖掘与分子育种利用研究进展[J]. 作物杂志,2023(3):1-11.
[3]刘杰,李天娇,姜玉英,等. 2020年我国玉米主要病虫害发生特点[J]. 中国植保导刊,2021,41(8):30-35.
[4]刘杰. 园林植物病害产生的原因及防治措施[J]. 安徽农学通报,2018,24(2):75-76.
[5]严聪文,苏代发,代庆忠,等. 草莓病害的生物防治研究进展[J]. 生物技术通报,2022,38(12):73-87.
[6]白亚男,周蓉,虞悦,等. 芽孢杆菌拮抗镰孢菌机制的研究进展[J]. 农业环境科学学报,2022,41(12):2787-2796.
[7]Wei X X,Xin D,Xin Y H,et al. Bacillus depressus sp. nov.,isolated from soil of a sunflower field[J]. Antonie Van Leeuwenhoek,2016,109(1):13-20.
[8]Haeng N J,Alyssa T,Qian Y L,et al. Multidisciplinary evaluation of plant growth promoting rhizobacteria on soil microbiome and strawberry quality[J]. AMB Express,2023,13(1):18.
[9]Yasmin H,Nosheen A,Naz R,et al. L-tryptophan-assisted PGPR-mediated induction of drought tolerance in maize (Zea mays L.)[J]. Journal of Plant Interactions,2017,12(1):567-578.
[10]张思奇,孙丽萍,赵同雪,等. 玉米茎基腐病生防菌的筛选及应用[J]. 微生物学通报,2017,44(10):2345-2352.
[11]Bettina B,László M,Sándor K,et al. Genome analysis of a Bacillus subtilis strain reveals genetic mutations determining biocontrol properties[J]. World Journal of Microbiology & Biotechnology,2019,35(3):52.
[12]章慧敏,宋旭东,周广飞,等. 玉米纹枯病研究进展[J]. 江苏农业科学,2022,50(2):8-14.
[13]田志强,李志敏,贾琳,等. 玉米大斑病抗病QTL的鉴定与效应分析[J]. 江苏农业科学,2021,49(20):70-73.
[14]张小飞,李晓,崔丽娜,等. 我国玉米灰斑病菌遗传多样性的ISSR分析[J]. 植物保护学报,2015,42(6):908-913.
[15]安星宇,黄露,吴石平,等. 贵州玉米灰斑病病原鉴定与抗病品种筛选[J]. 中国植保导刊,2022,42(6):45-49.
[16]胡颖雄,刘玉博,王慧,等. 玉米穗腐病抗性遗传与育种研究进展[J]. 玉米科学,2021,29(2):171-178.
[17]王昊,李素荣,吴春来,等. 海口玉米小斑病病原菌的分离及抗病自交系的筛选[J]. 分子植物育种,2023,21(4):1224-1231.
[18]刘冰. 玉米纹枯病和茎腐病生防菌株的分离鉴定及田间防效评价[D]. 长春:吉林大学,2020:1-2.
[19]郭佳月,徐素娟,赵晓霞,等. 玉米茎腐病拮抗放线菌的筛选及抑菌促生活性鉴定[J]. 玉米科学,2022,30(3):169-177.
[20]马红霞,张海剑,孙华,等. 玉米茎腐病病原菌检测方法研究[J]. 植物保护,2017,43(3):149-153.
[21]郭聪聪,朱维芳,付萌,等. 甘肃省玉米籽粒中镰孢菌分离频率及伏马毒素含量监测[J]. 植物保护学报,2015,42(6):942-948.
[22]杨校文,常立国,杨琴. 玉米穗腐病真菌毒素污染抗性遗传研究进展[J]. 玉米科学,2023,31(1):161-169.
[23]Yazar S,Omurtag G Z. Fumonisins,trichothecenes and zearalenone in cereals[J]. International Journal of Molecular Sciences,2008,9(11):2062-2090.
[24]田雪亮,张恺,王国梁,等. 转录组分析揭示玉米大斑病菌对解淀粉芽孢杆菌胁迫响应机制[J]. 中国科学(生命科学),2016,46(5):627-636.
[25]谢兰芬,何鹏飞,吴毅歆,等. 解淀粉芽孢杆菌B9601-Y2在玉米叶际定殖能力的研究[J]. 云南大学学报(自然科学版),2016,38(5):827-834.
[26]张新杰,刘彦策,钱欣雨,等. 弯曲平脐蠕孢拮抗细菌的筛选、鉴定及拮抗作用[J]. 微生物学通报,2020,47(8):2417-2424.
[27]崔文艳,何朋杰,尚娟,等. 解淀粉芽孢杆菌B9601-Y2对玉米的防病促生长效果研究[J]. 玉米科学,2015,23(5):153-158.
[28]Guimares R A,Zanotto E,Perrony P,et al. Integrating a chemical fungicide and Bacillus subtilis BIOUFLA2 ensures leaf protection and reduces ear rot (Fusarium verticillioides) and fumonisin content in maize[J]. Journal of Phytopathology,2020,169(3):139-148.
[29]Lizarraga-Sanchez J,Glenda,Sanchez-Pena,et al. Bacillus cereus sensu lato strain B25 controls maize stalk and ear rot in Sinaloa,Mexico[J]. Field Crops Research,2015,176:11-21.
[30]邓凤如,陈嘉杭,贾淑卉,等. 玉米赤霉烯酮脱毒菌PA26-7的分离鉴定及其应用效果评价[J]. 微生物学通报,2023,50(8):3404-3416.
[31]Xie S S,Jiang L,Wu Q,et al. Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum infection[J]. Phytopathology,2022,112(9):1886-1893.
[32]Yu C J,Liu X,Zhang X Y,et al. Mycosubtilin produced by Bacillus subtilis ATCC6633 inhibits growth and mycotoxin biosynthesis of Fusarium graminearum and Fusarium verticillioides[J]. Toxins,2021,13(11):791.
[33]段海明,余利,申仕惠,等. 玉米纹枯病菌Rhizoctonia solani拮抗菌gfj-4的鉴定及其发酵上清液抑菌特性[J]. 浙江农业学报,2018,30(1):106-116.
[34]雍彬,张超,马沁沁,等. 华重楼内生菌Iun35的分离及其抗菌蛋白的性质[J]. 应用与环境生物学报,2011,17(4):537-540.
[35]戚家明,孙杉杉,张东旭,等. 芽孢杆菌BS-6基于全基因组数据的分类鉴定及拮抗能力分析[J]. 生物技术通报,2019,35(10):111-118.
[36]Bressan W,Figueiredo J E F. Chitinolytic Bacillus spp. isolates antagonistic to Fusarium monilforme in maize[J]. Journal of Plant Pathology,2010,92(2):343-347.
[37]Liu H L,Qi Y Q,Wang J H,et al. The effect of immobilized Bacillus amyloliquefaciens JF-1 modulate dynamics on soil microbial communities and disease suppression caused by Fusarium graminearum[J]. Applied Ecology and Environmental Research,2022,20(3):2285-2302.
[38]吴沁. 解淀粉芽孢杆菌OR2-30对禾谷镰孢菌的抑菌机制研究[D]. 合肥:安徽农业大学,2022:22.
[39]Razzaq K A,Adeena M,Sajjad H,et al. Bacillus spp. as bioagents:uses and application for sustainable agriculture[J]. Biology,2022,11(12):1763.
[40]Shafi J,Tian H,Ji M. Bacillus species as versatile weapons for plant pathogens:a review[J]. Biotechnology & Biotechnological Equipment,2017,31(3):446-459.
[41]Beauregard P B,Chai Y,Vlamakis H,et al. Bacillus subtilis biofilm induction by plant polysaccharides[C].// Proceedings of the National Academy of Sciences of the United States of America,2013:E1621-E1630.
[42]王春晓,胡永红,杨文革,等. 地衣芽孢杆菌NJWGYH 833051的抑菌作用[J]. 湖北农业科学,2016,55(4):904-907.
[43]Jeger M J,Jeffries P,Elad Y,et al. A generic theoretical model for biological control of foliar plant diseases[J]. Journal of Theoretical Biology,2009,256(2):201-214.
[44]Bacon C W,Hinton D M. Endophytic and biological control potential of Bacillus mojavensis and related species[J]. Biological Control,2002,23(3):274-284.
[45]Pérez-García A,Romero D,Vicente A D. Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture[J]. Current Opinion in Biotechnology,2011,22(2):187-193.
[46]Yousuf J,Thajudeen J,Rahiman M,et al. Nitrogen fixing potential of various heterotrophic Bacillus strains from a tropical estuary and adjacent coastal regions[J]. Journal of Basic Microbiology,2017,57(11):922-932.
[47]Bhattacharyya P,Jha D. Plant growth-promoting rhizobacteria (PGPR):emergence in agriculture[J]. World Journal of Microbiology & Biotechnology,2012,28(4):1327-1350.
[48]Saxena A K,Kumar M,Chakdar H,et al. Bacillus species in soil as a natural resource for plant health and nutrition[J]. Journal of Applied Microbiology,2020,128(6):1583-1594.
[49]Monier J M,Lindow S E. Aggregates of resident bacteria facilitate survival of immigrant bacteria on leaf surfaces[J]. Microbial Ecology,2005,49(3):343–352.
[50]Dutta P,Muthukrishnan G,Gopalasubramaiam S K,et al. Plant growth-promoting rhizobacteria (PGPR) and its mechanisms against plant diseases for sustainable agriculture and better productivity[J]. Biocell,2022,46(8):1843-1859.
[51]Goncalves A C,Sánchez-Juanes F,Meirinho S,et al. Insight into the taxonomic and functional diversity of bacterial communities inhabiting blueberries in Portugal[J]. Microorganisms,2022,10(11):2193.
[52]Pertot I,Puopolo G,Hosni T,et al. Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean[J]. Fems Microbiology Ecology,2013,86(3):505-519.
[53]Stoll A,Salvatierra-Martinez R,Gonzalez M,et al. The role of surfactin production by Bacillus velezensis on colonization,biofilm formation on tomato root and leaf surfaces and subsequent protection (ISR) against Botrytis cinerea[J]. Microorganisms,2021,9(11):2251.
[54]Ilham B,Noureddine C,Philippe G,et al. Induced systemic resistance (ISR) in Arabidopsis thaliana by Bacillus amyloliquefaciens and Trichoderma harzianum used as seed treatments[J]. Agriculture,2019,9(8):166.
[55]Akram W,Anjum T,Ali B. Phenylacetic acid is ISR determinant produced by Bacillus fortis IAGS162,which involves extensive re-modulation in metabolomics of tomato to protect against Fusarium wilt[J]. Frontiers in Plant Science,2016,7(10):498.
[56]Vlot A C,Klessig D F,Park S W. Systemic acquired resistance:the elusive signal(s)[J]. Current Opinion in Plant Biology,2008,11(4):436-442.
[57]孙黄兵,钟年孝,孔令茹,等. 杜仲内生细菌DZSY21诱导玉米抗小斑病的系统抗性研究[J]. 生物学杂志,2018,35(5):49-53.
[58]Rahman A,Uddin W,Wenner N G. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens[J]. Molecular Plant Pathology,2015,16(6):546-558.
[59]Chowdhury S P,Uhl J,Grosch R,et al. Cyclic lipopeptides of Bacillus amyloliquefaciens subsp plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani[J]. Molecular Plant-Microbe Interactions,2015,28(9):984-995.
[60]Yu Y Y,Ying G,Li Z,et al. Induced systemic resistance for improving plant immunity by beneficial microbes[J]. Plants,2022,11(3):386.
[61]Ryu C M,Murphy J F,Mysore K S,et al. Plant growth-promoting rhizobacteria systemically protect Arabidopsis thaliana against Cucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway[J]. Plant Journal,2004,39(3):381-392.
[62]Xie S S,Yu H G,Li E Z,et al. Identification of miRNAs involved in Bacillus velezensis FZB42-activated induced systemic resistance in maize[J]. International Journal of Molecular Sciences,2019,20(20):5057.
[63]Xie S S,Jiang H Y,Ding T,et al. Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway[J]. Molecular Plant Pathology,2018,19(7):1612-1623.
[64]高学文,姚仕义,Pham H,等. 枯草芽孢杆菌B2菌株产生的抑菌活性物质分析[J]. 中国生物防治,2003,19(4):175-179.
[65]贺丹,李鹏,赵珅,等. 多黏类芽孢杆菌的生防机制研究进展[J]. 江苏农业科学,2023,51(8):1-8.
[66]朱碧春,顾丽,李正,等. 南极土壤芽孢杆菌的分离鉴定及其防治玉米细菌性褐腐病的研究[J]. 南京农业大学学报,2017,40(4):641-648.
[67]靳佳琦,闻建平. 合成生物学指导下芽孢杆菌合成环脂肽的研究进展[J]. 中国生物工程杂志,2022,42(6):86-101.
[68]Fujita S,Yokota K. Disease suppression by the cyclic lipopeptides iturin A and surfactin from Bacillus spp. against Fusarium wilt of lettuce[J]. Journal of General Plant Pathology,2019,85(1):44-48.
[69]李道明,王瑛,陈超,等. 芽孢杆菌几种重要抗菌脂肽研究进展[J]. 生物工程学报,2022,38(5):1768-1783.
[70]Baindara P,Mandal S M,Chawla N,et al. Characterization of two antimicrobial peptides produced by a halotolerant Bacillus subtilis strain SK.DU.4 isolated from a rhizosphere soil sample[J]. AMB Express,2013,3(1):1-11.
[71]Grabova A Y,Dragovoz I V,Zelena L B,et al. Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus[J]. Biopolymers and Cell,2016,32(1):41-48.
[72]Bonmatin J,Laprévote O,Peypoux F. Diversity among microbial cyclic lipopeptides:iturins and surfactins. Activity-structure relationships to design new bioactive agents[J]. Combinatorial Chemistry & High Throughput Screening,2003,6(6):541-556.
[73]Théatre A,Cano-Prieto C,Bartolini M,et al. The surfactin-like lipopeptides from Bacillus spp.:natural biodiversity and synthetic biology for a broader application range[J]. Frontiers in Bioengineering and Biotechnology,2021,9:623701.
[74]Ali S,Hameed S,Shahid M,et al. Functional characterization of potential PGPR exhibiting broad-spectrum antifungal activity[J]. Microbiological Research,2020,232(C):126389.
[75]Liu Y N,Lu J,Sun J,et al. Membrane disruption and DNA binding of Fusarium graminearum cell induced by C16-Fengycin A produced by Bacillus amyloliquefaciens[J]. Food Control,2019,102:206-213.
[76]Kulimushi P Z,Basime G C,Nachigera G M,et al. Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates:from lab to field assays in south Kivu[J]. Environmental Science and Pollution Research,2018,25(30):29808-29821.
[77]金清,肖明. 新型抗菌肽——表面活性素、伊枯草菌素和丰原素[J]. 微生物与感染,2018,13(1):56-64.
[78]Hsieh F C,Li M C,Lin T C,et al. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR[J]. Current Microbiology,2004,49(3):186-191.
[79]Borriss R,Chen X H,Rueckert C,et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7 and FZB42:a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons[J]. International Journal of Systematic & Evolutionary Microbiology,2011,61(8):1786-1801.
[80]Joshi M,Srivastava R,Sharma A K,et al. Screening of resistant varieties and antagonistic Fusarium oxysporum for biocontrol of Fusarium wilt of chilli[J]. Journal of Plant Pathology & Microbiology,2012,3(5):1-6.
[81]Tariq M,Noman M,Ahmed T,et al. Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR):a review[J]. Heighten Science Publications Corporation,2017,1(1):38-43.
[82]Mohanram S,Kumar P. Rhizosphere microbiome:revisiting the synergy of plant-microbe interactions[J]. Annals of Microbiology,2019,69(4):307-320.
[83]朱华珺,周瑚,任佐华,等. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学,2020,34(5):470-478.
[84]陈奕鹏,杨扬,桑建伟,等. 拮抗内生芽孢杆菌BEB17分离鉴定及其挥发性物质抑菌活性分析[J]. 植物病理学报,2018,48(4):537-546.
[85]Massawe V C,Rao A H,Farzand A,et al. Volatile organic compounds of endophytic Bacillus spp. have biocontrol activity against Sclerotinia sclerotiorum[J]. Phytopathology,2018,108(12):1373-1385.
[86]Xie S S,Zang H Y,Wu H J,et al. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology,2018,19(1):49-58.
[87]Gao Z F,Zhang B J,Liu H P,et al. Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea[J]. Biological Control,2017,105:27-39.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]姚茹,王智勇,王广军,等.饲料中添加芽孢杆菌对草鱼生长和水质的影响[J].江苏农业科学,2013,41(04):214.
[3]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(4):56.
[4]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):64.
[5]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[6]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(4):334.
[7]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(4):150.
[8]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[9]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(4):119.
[10]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(4):26.
[11]金雷,成明根,孙斌,等.芽孢杆菌QC-13对咪唑乙烟酸污染土壤的生物修复[J].江苏农业科学,2015,43(06):300.
 Jing Lei,et al.Bioremediation of imazethapyr contaminated soil by Bacillus sp. QC-13[J].Jiangsu Agricultural Sciences,2015,43(4):300.

备注/Memo

备注/Memo:
收稿日期:2023-04-23
基金项目:四川省自然科学基金(编号:2022NSFSC1720)。
作者简介:蒲欣(2000—),女,四川南充人,硕士研究生,主要从事植物与微生物互作研究。E-mail:2580398798@qq.com。
通信作者:何兵,博士,副教授,主要从事植物与微生物互作研究。E-mail:hebing@sicnu.edu.cn。
更新日期/Last Update: 2024-03-20