|本期目录/Table of Contents|

[1]赵睿涵,钱建财,张莉,等.作物理想株型研究进展[J].江苏农业科学,2024,52(4):31-41.
 Zhao Ruihan,et al.Research progress of crop ideal plant type[J].Jiangsu Agricultural Sciences,2024,52(4):31-41.
点击复制

作物理想株型研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第4期
页码:
31-41
栏目:
专论与综述
出版日期:
2024-02-20

文章信息/Info

Title:
Research progress of crop ideal plant type
作者:
赵睿涵1钱建财2张莉2常剑波3古庆辉4黄五星1
1.河南农业大学烟草学院,河南郑州 450046; 2.江苏中烟工业有限责任公司,江苏南京 210000;3.河南省烟草公司三门峡市公司,河南三门峡 472000; 4.三门峡市烟草公司渑池县分公司,河南渑池 472400
Author(s):
Zhao Ruihanet al
关键词:
作物理想株型形态特征遗传栽培技术
Keywords:
-
分类号:
S359
DOI:
-
文献标志码:
A
摘要:
随着现代农业科学的发展,株型的内涵由原先的作物形态结构性状转变为株型的改善,这是生理综合作用的结果。理想株型的培育能够合理控制群体结构,优化个体长势,从而促进作物对光的利用,提高干物质积累能力,改善作物对土壤养分的吸收特性,提高作物抗逆性等。因此,本文首先从叶部、茎部、穗部和根部4个方面综述了作物理想株型的形态特征,随后从叶部、茎部、穗部和根部4个方面总结了培育作物理想株型的遗传基础,最后从种植密度、肥料、灌水以及化学调控等方面总结了理想株型调控栽培技术,以期为理想株型的培育提供理论依据。
Abstract:
-

参考文献/References:

[1]Donald C M. The breeding of crop ideotypes[J]. Euphytica,1968,17(3):385-403.
[2]顾会战,母明新,史洪涛,等. 关于烤烟“中棵烟”培育的若干思考[J]. 中国烟草学报,2020,26(6):89-96.
[3]马梦影,巩文靓,康雪蒙,等. 水稻理想株型改良的研究进展[J]. 中国农学通报,2020,36(29):1-6.
[4]杨峰,丁孝羊,赵勇,等. 浅析常规水稻育种的途径与技术[J]. 中国农业信息,2016(9):125-126.
[5]杜永,王艳,黄生元,等. 淮北地区偏大穗型中粳水稻品种株型特征和稻米品质[J]. 中国稻米,2013,19(5):53-56.
[6]李冬,王俊敏,徐志福,等. 浙江省高产水稻叶片形态研究[J]. 浙江农业学报,2015,27(4):671-677.
[7]杨守仁,张龙步,陈温福,等. 水稻理想株形育种的基础研究及其与国内外同类研究的比较[J]. 沈阳农业大学学报,1991,22(增刊1):1-5.
[8]杨守仁,张龙步,王进民. 水稻理想株形育种的理论和方法初论[J]. 中国农业科学,1984,17(3):6-13.
[9]吴永成,周顺利,张永平,等. 节水高产小麦理想全株型探讨[J]. 干旱地区农业研究,2005,23(2):126-129.
[10]赵久然. 超级玉米育种目标及实现途径[J]. 作物杂志,2005(3):1-3.
[11]李志华,王洪炜,陆承念,等. 浅析清江源“中棵烟+高油分”烟叶外观质量特征[J]. 农家参谋,2018(13):4-6.
[12]云南省烤烟科学研究所.“中棵烟”优质丰产经验剖析[J]. 中国烟草,1980,1(2):1-4.
[13]许娜,徐铨,徐正进,等. 水稻株型生理生态与遗传基础研究进展[J]. 作物学报,2023,49(7):1735-1746.
[14]袁隆平. 杂交水稻超高产育种[J]. 杂交水稻,2000,15(增刊2):34-36.
[15]李红,何炜,连玲,等. 水稻株型的研究进展[J]. 福建稻麦科技,2020,38(4):61-66.
[16]杨军学,罗世武,程炳文,等. 播种方式与密度互作对糜子群体冠层及产量的影响[J]. 江苏农业科学,2022,50(24):65-73.
[17]张文宇,汤亮,姚鑫锋,等. 基于过程的小麦株型指标动态模拟[J]. 中国农业科学,2012,45(12):2364-2374.
[18]刘凤霞. 关于玉米理想株型与密植的合理结合探讨[J]. 农技服务,2017,34(22):16.
[19]邵惠芳,刘志宏,崔登科,等. 基于氮素效应的烤烟叶面积指数动态模拟[J]. 中国生态农业学报,2017,25(9):1276-1286.
[20]张志忠. 水稻倒伏原因及预防对策[J]. 新农业,2021(21):11.
[21]曹庆军,杨粉团,姜晓莉,等. 玉米抗茎倒能力评价及理想株型[J]. 东北农业科学,2017,42(2):17-21.
[22]Sun Z X,Wang X F,Liu R H,et al. Comparative transcriptomic analysis reveals the regulatory mechanism of the gibberellic acid pathway of Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.]dwarf mutants[J]. BMC Plant Biology,2021,21(1):206.
[23]Zhu H Y,Zhang M J,Sun S R,et al. A single nucleotide deletion in an ABC transporter gene leads to a dwarf phenotype in watermelon[J]. Frontiers in Plant Science,2019,10:1399.
[24]蔡星星,张盛,王欢,等. 水稻株型基因的研究现状及应用前景[J]. 分子植物育种,2017,15(7):2809-2814.
[25]Muhammad A,Hao H H,Xue Y L,et al. Survey of wheat straw stem characteristics for enhanced resistance to lodging[J]. Cellulose,2020,27(5):2469-2484.
[26]Li R H,Li M J,Ashraf U,et al. Exploring the relationships between yield and yield-related traits for rice varieties released in China from 1978 to 2017[J]. Frontiers in Plant Science,2019,10:543.
[27]Zhao L,Zheng Y T,Wang Y,et al. A HST1-like gene controls tiller angle through regulating endogenous auxin in common wheat[J]. Plant Biotechnology Journal,2023,21(1):122-135.
[28]Wang Z,Xu G Y,Ma P D,et al. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage (Brassica campestris ssp. chinensis)[J]. Frontiers in Microbiology,2017,8:1270.
[29]Sharma M,Singh D,Saksena H B,et al. Understanding the intricate web of phytohormone signalling in modulating root system architecture[J]. International Journal of Molecular Sciences,2021,22(11):5508.
[30]He J,Xu C,You C J,et al. Parallel analysis of RNA ends reveals global microRNA-mediated target RNA cleavage in maize[J]. The Plant Journal,2022,112(1):268-283.
[31]Chen W,Sheng Z H,Cai Y C,et al. Rice morphogenesis and chlorophyll accumulation is regulated by the protein encoded by NRL3 and its interaction with NAL9[J]. Frontiers in Plant Science,2019,10:175.
[32]Liang J Y,Guo S Y,Sun B,et al. Constitutive expression of REL1 confers the rice response to drought stress and abscisic acid[J]. Rice,2018,11(1):59.
[33]Fang J J,Guo T T,Xie Z W,et al. The URL1-ROC5-TPL2 transcriptional repressor complex represses the ACL1 gene to modulate leaf rolling in rice[J]. Plant Physiology,2021,185(4):1722-1744.
[34]Li J J,Li D M,Liu B Y,et al. Effects of root restriction on phytohormone levels in different growth stages and grapevine organs[J]. Scientific Reports,2022,12(1):1323.
[35]Wu S,Wang J L,Zhao Y X,et al. Characterization and genetic dissection of maize ear leaf midrib acquired by 3D digital technology[J]. Frontiers in Plant Science,2022,13:1063056.
[36]Li W Q,Wang F Q,Wang J,et al. Overexpressing CYP71Z2 enhances resistance to bacterial blight by suppressing auxin biosynthesis in rice[J]. PLoS One,2015,10(3):e0119867.
[37]Yoshikawa T,Ito M,Sumikura T,et al. The rice FISH BONE gene encodes a tryptophan aminotransferase,which affects pleiotropic auxin-related processes[J]. The Plant Journal,2014,78(6):927-936.
[38]Lyu J Y,Guo Y A,Du C L,et al. BnERF114.A1,a rapeseed gene encoding APETALA2/ETHYLENE RESPONSE FACTOR,regulates plant architecture through auxin accumulation in the apex in Arabidopsis[J]. International Journal of Molecular Sciences,2022,23(4):2210.
[39]Chen H,Wu Q K,Ni M,et al. Transcriptome analysis of endogenous hormone response mechanism in roots of Styrax tonkinensis under waterlogging[J]. Frontiers in Plant Science,2022,13:896850.
[40]Sánchez-Parra B,Pérez-Alonso M M,Ortiz-García P,et al. Accumulation of the auxin precursor indole-3-acetamide curtails growth through the repression of ribosome-biogenesis and development-related transcriptional networks[J]. International Journal of Molecular Sciences,2021,22(4):2040.
[41]Lehmann T,Janowitz T,Sánchez-Parra B,et al. Arabidopsis NITRILASE 1 contributes to the regulation of root growth and development through modulation of auxin biosynthesis in seedlings[J]. Frontiers in Plant Science,2017,8:36.
[42]Olatunji D,Geelen D,Verstraeten I. Control of endogenous auxin levels in plant root development[J]. International Journal of Molecular Sciences,2017,18(12):2587.
[43]Niu M,Wang H R,Yin W C,et al. Rice dwarf and low-tillering and the homeodomain protein osh15 interact to regulate internode elongation via orchestrating brassinosteroid signaling and metabolism[J]. The Plant Cell,2022,34(10):3754-3772.
[44]Jiang L,Rong M Q,Wang M X,et al. Combining ability analysis of relevant characters of maize inbred lines suitable for machine harvest[J]. Computational Intelligence and Neuroscience,2022,2022:2480801.
[45]Sun C W,Zhang F Y,Yan X F,et al. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China[J]. Plant Biotechnology Journal,2017,15(8):953-969.
[46]Liu X J,Wu C Y,Su D D,et al. The SlHB8 acts as a negative regulator in stem development and lignin biosynthesis[J]. International Journal of Molecular Sciences,2021,22(24):13343.
[47]Yu X W,Lara N A H,Carbajal E M,et al. QTL mapping of morphological characteristics that correlated to drought tolerance in St.Augustinegrass[J]. PLoS One,2022,17(5):e0268004.
[48]Chen L P,Zhao Y,Xu S J,et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. The New Phytologist,2018,218(1):219-231.
[49]Stanic M,Hickerson N M N,Arunraj R,et al. Gene-editing of the strigolactone receptor BnD14 confers promising shoot architectural changes in Brassica napus (canola)[J]. Plant Biotechnology Journal,2021,19(4):639-641.
[50]Wang B,Smith S M,Li J Y.Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology,2018,69:437-468.
[51]Wang Y J,Zhao J,Lu W J,et al. Gibberellin in plant height control:old player,new story[J]. Plant Cell Reports,2017,36(3):391-398.
[52]He J,Xin P,Ma X,et al. Gibberellin metabolism in flowering plants:an update and perspectives[J]. Frontiers in Plant Science,2020,11:6.
[53]Huang Y P,Chen I H,Kao Y S,et al. The gibberellic acid derived from the plastidial MEP pathway is involved in the accumulation of Bamboo mosaic virus[J]. The New Phytologist,2022,235(4):1543-1557.
[54]Li R J,Han Y Q,Zhang Q,et al. Transcriptome profiling analysis reveals co-regulation of hormone pathways in foxtail millet during Sclerospora graminicola infection[J]. International Journal of Molecular Sciences,2020,21(4):1226.
[55]Wang S S,Wang Y J.Harnessing hormone gibberellin knowledge for plant height regulation[J]. Plant Cell Reports,2022,41(10):1945-1953.
[56]Wu D,Yang L,Gu J H,et al. A functional genomics view of gibberellin metabolism in the cnidarian symbiont Breviolum minutum[J]. Frontiers in Plant Science,2022,13:927200.
[57]Regnault T,Davière J M,Heintz D,et al. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development[J]. The Plant Journal,2014,80(3):462-474.
[58]Gao H B,Wang W G,Wang Y H,et al. Molecular mechanisms underlying plant architecture and its environmental plasticity in rice[J]. Molecular Breeding,2019,39(12):1-15.
[59]Liao Z G,Yu H,Duan J B,et al. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice[J]. Nature Communications,2019,10:2738.
[60]Li P Y,Li Q,Lu X L,et al. Genome-wide association study reveals novel QTLs and candidate genes for grain number in rice[J]. International Journal of Molecular Sciences,2022,23(21):13617.
[61]Xu Q,Liu T S,Bi W J,et al. Different effects of DEP1 on vascular bundle-and panicle-related traits under indica and japonica genetic backgrounds[J]. Molecular Breeding,2015,35(8):173.
[62]Xu Q,Xu N,Xu H,et al. Breeding value estimation of the application of IPA1 and DEP1 to improvement of Oryza sativa L.ssp.japonica in early hybrid generations[J]. Molecular Breeding,2014,34(4):1933-1942.
[63]Jiang J H,Tan L B,Zhu Z F,et al. Molecular evolution of the TAC1 gene from rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics,2012,39(10):551-560.
[64]Wang H,Tu R R,Sun L P,et al. Tiller angle control 1 is essential for the dynamic changes in plant architecture in rice[J]. International Journal of Molecular Sciences,2022,23(9):4997.
[65]徐崟海,刘佳. IGT基因家族调控作物株型研究进展[J]. 生物技术进展,2022,12(5):673-682.
[66]Uga Y,Sugimoto K,Ogawa S,et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nature Genetics,2013,45(9):1097-1102.
[67]Guseman J M,Webb K,Srinivasan C,et al. DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. The Plant Journal,2017,89(6):1093-1105.
[68]Wilmoth J C,Wang S C,Tiwari S B,et al. NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation[J]. The Plant Journal,2005,43(1):118-130.
[69]Xie Q,Frugis G,Colgan D,et al. Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development[J]. Genes & Development,2000,14(23):3024-3036.
[70]Nestler J,Wissuwa M.Superior root hair formation confers root efficiency in some,but not all,rice genotypes upon P deficiency[J]. Frontiers in Plant Science,2016,7:1935.
[71]Ramírez M,Flores-Pacheco G,Reyes J L,et al. Two common bean genotypes with contrasting response to phosphorus deficiency show variations in the microRNA 399-mediated PvPHO2 regulation within the PvPHR1 signaling pathway[J]. International Journal of Molecular Sciences,2013,14(4):8328-8344.
[72]Guo B H,Dai Y,Chen L,et al. Genome-wide analysis of the soybean root transcriptome reveals the impact of nitrate on alternative splicing[J]. G3-Genes Genomes Genetics,2021,11(7):jkab162.
[73]Ramanathan V,Rahman H,Subramanian S,et al. OsARD4 encoding an acireductone dioxygenase improves root architecture in rice by promoting development of secondary roots[J]. Scientific Reports,2018,8:15713.
[74]郑登峰,陈懿,陈伟,等. 烤烟株型与产量和质量的关系[J]. 土壤,2018,50(4):718-725.
[75]Wang L Q,Yu X F,Gao J L,et al. Regulation of subsoiling tillage on the grain filling characteristics of maize varieties from different eras[J]. Scientific Reports,2021,11:20430.
[76]Tokatlidis I.Crop resilience via inter-plant spacing brings to the fore the productive ideotype[J]. Frontiers in Plant Science,2022,13:934359.
[77]van Ittersum M K,Cassman K G,Grassini P,et al. Yield gap analysis with local to global relevance:a review[J]. Field Crops Research,2013,143:4-17.
[78]任佰朝,李利利,董树亭,等. 种植密度对不同株高夏玉米品种茎秆性状与抗倒伏能力的影响[J]. 作物学报,2016,42(12):1864-1872.
[79]李方一,黄璜,官梅,等. 油菜理想株型研究进展[J]. 中国油料作物学报,2023,45(1):4-16.
[80]Zheng M J,Chen J,Shi Y H,et al. Manipulation of lignin metabolism by plant densities and its relationship with lodging resistance in wheat[J]. Scientific Reports,2017,7:41805.
[81]朱海滨,俞航,马中涛,等. 不同基本苗对无人飞播水稻产量、品质及抗倒伏特性的影响[J]. 江苏农业科学,2022,50(5):50-59.
[82]门洪文,郭守鹏,黄昌见,等. 种植密度对不同株型玉米农艺性状、产量及抗倒伏特性的影响[J]. 农学学报,2021,11(7):1-6.
[83]陈求柱,王志琴,图尔汗,等. 氮肥运筹对棉花干物质累积及产量的影响[J]. 湖北农业科学,2013,52(22):5437-5442.
[84]刘卫星,王晨阳,冯伟,等. 灌水与施氮对夏玉米冠层结构及产量的影响[J]. 玉米科学,2014,22(5):120-126.
[85]Ma X D,Zhu K X,Guan H O,et al. Calculation method for phenotypic traits based on the 3D reconstruction of maize canopies[J]. Sensors,2019,19(5):1201.
[86]杨志平,周伟,王淘,等. 施氮对蜀恢498及其突变体株型和物质生产特性的影响[J]. 西北农林科技大学学报(自然科学版),2020,48(6):18-29.
[87]张祥,胡大鹏,李亚兵,等. 长江流域大麦后直播棉集中成铃与高产协同表达群体株型特征[J]. 棉花学报,2017,29(6):513-524.
[88]张晨霞,胡大鹏,张中宁,等. 缓释氮肥运筹对麦后直播棉株型调节和成铃的影响[J]. 扬州大学学报(农业与生命科学版),2022,43(1):88-96.
[89]Tian T,Wang J G,Wang H J,et al. Nitrogen application alleviates salt stress by enhancing osmotic balance,ROS scavenging,and photosynthesis of rapeseed seedlings (Brassica napus)[J]. Plant Signaling & Behavior,2022,17(1):e2081419.
[90]袁洋,董奇琦,贾佩岩,等. 间作下不同肥料对玉米花生生长发育、氮代谢及产量的影响[J]. 沈阳农业大学学报,2022,53(2):129-139.
[91]Li J,Lei S Q,Gong H R,et al. Field performance of sweet sorghum in salt-affected soils in China:a quantitative synthesis[J]. Environmental Research,2023,222:115362.
[92]张庆,殷春渊,张洪程,等. 水稻氮高产高效与低产低效两类品种株型特征差异研究[J]. 作物学报,2010,36(6):1011-1021.
[93]Li Z Y,Xu B,Du T H,et al. Excessive nitrogen fertilization favors the colonization,survival,and development of Sogatella furcifera via bottom-up effects[J]. Plants,2021,10(5):875.
[94]蔡宪杰,杨义方,马永建,等. 腐殖酸类肥料对碱性植烟土壤pH及烤烟产量质量的影响[J]. 中国农学通报,2008,24(6):261-265.
[95]Li J,Fan X L,Zhu Y L,et al. Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na+toxicity and sustaining sea rice growth[J]. Open Life Sciences,2022,17(1):1165-1173.
[96]Bozkurt S,Keskin M. Effect of deficit irrigation on the estimation of cucumber leaf area under greenhouse conditions[J]. International Journal of Agriculture and Biology,2018,20(4):877-882.
[97]李淦,高丽丽,康正华,等. 不同灌水处理对棉花生长发育及产量的影响[J]. 新疆农业科学,2016,53(6):992-998.
[98]陈雪梅,刘强,李同蕊,等. 不同灌水量和密度对无膜棉生长性状及结铃分布的影响[J]. 河北农业大学学报,2022,45(1):12-19.
[99]Si Z Y,Qin A Z,Liang Y P,et al. A review on regulation of irrigation management on wheat physiology,grain yield,and quality[J]. Plants,2023,12(4):692.
[100]田广丽,李东伟,甄博,等. 灌溉模式和氮肥用量对水稻分蘖期生长特征的影响[J]. 灌溉排水学报,2018,37(12):46-52.
[101]景文疆,顾汉柱,张小祥,等. 中籼水稻品种改良过程中米质和根系特征对灌溉方式的响应[J]. 中国水稻科学,2022,36(5):505-519.
[102]Han D S,Li H R,He L,et al. Effect of irrigation and nitrogen topdressing at different leaf ages on the length and growth of wheat leaves,leaf sheaths,and internodes[J]. Agriculture-Basel,2022,12(10):1517.
[103]Xu X X,Zhang Y H,Li J P,et al. Optimizing single irrigation scheme to improve water use efficiency by manipulating winter wheat sink-source relationships in Northern China Plain[J]. PLoS One,2018,13(3):e0193895.
[104]Zhang Y P,Zhang Y H,Wang Z M,et al. Characteristics of canopy structure and contributions of non-leaf organs to yield in winter wheat under different irrigated conditions[J]. Field Crops Research,2011,123(3):187-195.
[105]刘明池,季延海,武占会,等. 我国蔬菜育苗产业现状与发展趋势[J]. 中国蔬菜,2018(11):1-7.
[106]黄凯. 金神农山地中棵烟理想株型调控的技术途径[J]. 安徽农业科学,2019,47(5):41-44.
[107]Abeed A H A,Ali M,Ali E F,et al. Induction of Catharanthus roseus secondary metabolites when Calotropis procera was used as bio-stimulant[J]. Plants,2021,10(8):1623.
[108]吴思,陶明德,周迎鑫,等. 化控对夏玉米产量与茎秆抗倒伏性状的影响[J]. 江苏农业科学,2023,51(1):91-98.
[109]张瑞茂,李超,陈大伦,等. 甘蓝型油菜矮秆直立株型材料DW 871的选育[J]. 种子,2019,38(2):116-120,123.
[110]钱可.OsSAPK10调控水稻株高的机理研究[D]. 武汉:华中农业大学,2018.
[111]张佳蕾,郭峰,李新国,等. 不同时期喷施多效唑对花生生理特性、产量和品质的影响[J]. 应用生态学报,2018,29(3):874-882.
[112]Wei Y Z,Dong C,Zhang H N,et al. Transcriptional changes in litchi (Litchi chinensis Sonn.) inflorescences treated with uniconazole[J]. PLoS One,2017,12(4):e0176053.
[113]吴思,陶明德,周迎鑫,等. 化控对夏玉米产量与茎秆抗倒伏性状的影响[J]. 江苏农业科学,2023,51(1):91-98.
[114]李国卫,秦圣豪,刘译阳,等. 花生株型相关性状研究进展[J]. 中国油料作物学报,2020,42(6):934-939.

相似文献/References:

[1]谢斌,吴文良,郭岩彬,等.作物富硒研究进展[J].江苏农业科学,2014,42(01):15.
 Xie Bin,et al.Research progress of selenium enrichment of crops[J].Jiangsu Agricultural Sciences,2014,42(4):15.
[2]赵媛,卢凤英.作物内生菌研究进展[J].江苏农业科学,2015,43(10):20.
 Zhao Yuan,et al.Research progress on plant endophytic fungus[J].Jiangsu Agricultural Sciences,2015,43(4):20.
[3]张晴晴,齐国红,张云龙.基于改进分水岭算法的作物病害叶片分割方法[J].江苏农业科学,2015,43(02):400.
 Zhang Qingqing,et al.Crop disease leaf segmentation method based on improved watershed algorithm[J].Jiangsu Agricultural Sciences,2015,43(4):400.
[4]张 兵,韩 霞,庄 斌,等.介电特性在作物需水诊断中的应用研究进展[J].江苏农业科学,2015,43(02):7.
 Zhang Bing,et al.Research progress on application of dielectric property in diagnosis of crop water demand[J].Jiangsu Agricultural Sciences,2015,43(4):7.
[5]纪荣婷,闵炬,黄程鹏,等.光谱仪在作物施氮推荐中的应用研究进展——以GreenSeeker光谱仪为例[J].江苏农业科学,2017,45(02):9.
 Ji Rongting,et al.Research progress on application of spectrometer in nitrogen fertilizer recommendation—Taking GreenSeeker as an example[J].Jiangsu Agricultural Sciences,2017,45(4):9.
[6]林英,司春灿,黄莉萍,等.纳米技术在作物病害防治中的应用研究进展[J].江苏农业科学,2017,45(11):11.
 Lin Ying,et al.Research progress on application of nanotechnology in crop disease control[J].Jiangsu Agricultural Sciences,2017,45(4):11.
[7]黄维,杨沈斌,石春林,等.苏皖鄂地区一季稻产量灾损的风险区划[J].江苏农业科学,2018,46(03):219.
 Huang Wei,et al.Risk regionalization of yield losses of single-season rice in Jiangsu,Anhui and Hubei provinces[J].Jiangsu Agricultural Sciences,2018,46(4):219.
[8]杨鸿波,廖朝选,赵亚洲,等.3种作物初期生长对全氟辛烷磺酸盐和全氟辛酸的响应及富集特征[J].江苏农业科学,2018,46(15):232.
 Yang Hongbo,et al.Response and enrichment characteristics of initial growth of three crops to perfluorooctane sulphonate and perfluorooctanoic acid[J].Jiangsu Agricultural Sciences,2018,46(4):232.
[9]赵子娟,刘东,杭中桥.作物遥感识别方法研究现状及展望[J].江苏农业科学,2019,47(16):45.
 Zhao Zijuan,et al.Research status and prospect of crop remote sensing identification methods[J].Jiangsu Agricultural Sciences,2019,47(4):45.
[10]徐丽萍,梁乐缤,李兵,等.不同修复技术对土壤有效态镉含量及作物镉吸收的影响[J].江苏农业科学,2022,50(1):207.
 Xu Liping,et al.Effects of different remediation techniques on soil available cadmium contents and crop cadmium uptake[J].Jiangsu Agricultural Sciences,2022,50(4):207.

备注/Memo

备注/Memo:
收稿日期:2023-05-31
基金项目:江苏中烟工业有限责任公司科技项目(编号:20220729);河南省科技攻关项目(编号:202102310026)。
作者简介:赵睿涵(1999—),男,辽宁大连人,硕士研究生,主要从事烟草品质生态与质量评价研究。E-mail:190315674@qq.com。
通信作者:黄五星,博士,副教授,主要从事烟草品质生态与质量评价研究。E-mail:wxhuang@henau.edu.cn。
更新日期/Last Update: 2024-03-20