|本期目录/Table of Contents|

[1]陈子强,李刚,颜静宛,等.玉米CBS基因家族的鉴定和特征分析[J].江苏农业科学,2024,52(4):41-49.
 Chen Ziqiang,et al.Identification and characterization of CBS gene family in maize[J].Jiangsu Agricultural Sciences,2024,52(4):41-49.
点击复制

玉米CBS基因家族的鉴定和特征分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第4期
页码:
41-49
栏目:
生物技术
出版日期:
2024-02-20

文章信息/Info

Title:
Identification and characterization of CBS gene family in maize
作者:
陈子强李刚颜静宛郭新睿胡昌泉王月王锋田大刚
福建省农业科学院生物技术研究所/福建省农业遗传工程重点实验室,福建福州350003
Author(s):
Chen Ziqianget al
关键词:
玉米CBS基因家族生物信息学生物胁迫非生物胁迫特征分析
Keywords:
-
分类号:
S513.01
DOI:
-
文献标志码:
A
摘要:
为研究玉米CBS(ZmCBS)基因家族的特征,探讨其功能,对ZmCBS基因家族进行鉴定,分析其染色体定位、基因结构、保守结构域及进化关系,并对ZmCBS家族基因在玉米组织中的表达情况及其在非生物胁迫下的表达变化进行分析。基于玉米基因组数据库,鉴定到37个CBS基因家族成员,它们不均匀地分布在玉米的8条染色体上。该家族蛋白除保守的CBS结构域外,多数成员还包含其他结构域,包括电压门控的氯化物通道蛋白(voltage gated ClC)、Phox/Bemp1(PB1)结构域、五肽重复序列(penatricopeptider repeat,PPR)和E_SET结构域等。按照基因结构和进化关系可分为6个亚类,且同一进化分支上的基因具有相似的外显子结构和CDS长度,但内含子长度差异很大。启动子分析结果表明,ZmCBS基因启动子上含有响应激素和非生物胁迫的顺式作用元件。转录组数据的基因表达谱分析显示,ZmCBS基因家族部分成员在叶、花粉或胚中优势表达。ZmCBS3和ZmCBS14受冷胁迫诱导表达,ZmCBS14和ZmCBS22受干旱胁迫诱导表达,暗示这些基因在玉米响应外界胁迫中起重要作用。分析结果将为进一步研究ZmCBS家族基因奠定基础。
Abstract:
-

参考文献/References:

[1]郭富烨,苍晶,卢秋巍,等. 六倍体小麦CBS基因家族全基因组分析[J]. 麦类作物学报,2020,40(4):421-433.
[2]Bateman A. The structure of a domain common to archaebacteria and the homocystinuria disease protein[J]. Trends in Biochemical Sciences,1997,22(1):12-13.
[3]Ignoul S J. CBS domains:structurefunctionand pathology in human proteins[J]. American Journal of Physiol Cell Physiology,2005,289(6):1369-1378.
[4]Xiao B,Heath R,Saiu P,et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase[J]. Nature,2007,449(7161):496-500.
[5]Yoo K,Ok S,Jeong B C,et al. Single cystathionine β-synthase domain-containing proteins modulate development by regulating the thioredoxin system in Arabidopsis[J]. Plant Cell,2011,23(10):3577-3594.
[6]Ke X L,Xiao H,Peng Y Q,et al. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state[J]. Science,2022,378(6623):971-977.
[7]Sintchak M,Fleming M,Futer O,et al. Structure and mechanism of inosine monophosphate dehydrogenase in complex with the immunosuppressant mycophenolic acid[J]. Cell,1996,85(6):921-930.
[8]Woods A,Cheung P,Smith F,et al. Characterization of AMP-activated protein kinase beta and gamma subunits:assembly of the heterotrimeric complex in vitro[J]. Journal Biological Chemistry,1996,271(17):10282-10290.
[9]Schmidt-Rose T,Jentsch T. Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1[J]. Journal Biological Chemistry,1997,272(33):20515-20521.
[10]Liu H Z,Wang Q,Xie L Y,et al. Genome-wide identification of cystathionine beta synthase genes in wheat and its relationship with anther male sterility under heat stress[J]. Frontier in Plant Science,2022,13:1061472.
[11]Jung K,Kim Y,Yoo K,et al. A cystathionine-β-synthase domain-containing protein CBSX2 regulates endothecial secondary cell wall thickening in anther development[J]. Plant Cell Physiology,2013,54(2):195-208.
[12]Shin J S,So W M,Kim S Y,et al. CBSX3-Trxo-2 regulates ROS generation of mitochondrial complex Ⅱ (succinate dehydrogenase) in Arabidopsis[J]. Plant Science,2020,294:110458.
[13]Mou S L,Shi L P,Lin W,et al. Over-expression of rice CBS domain containing protein OsCBSX3 confers rice resistance to Magnaporthe oryzae inoculation[J]. Internation Journal of Molecular Science,2015,16(7):15903-15917.
[14]Singh A,Kumar R,Pareek A,et al. Overexpression of rice CBS domain containing protein improves salinity oxidative and heavy metal tolerance in transgenic tobacco[J]. Molecular Biotechnology,2012,52(3):205-216.
[15]Kumar R,Subba A,Kaur C,et al. OsCBSCBSPB4 is a two cystathionine-β-synthase domain-containing protein from rice that functions in abiotic stress tolerance[J]. Current Genomics,2018,19(1):50-59.
[16]Hao Q N,Yang Y Y,Shan Z H,et al. Genome-wide investigation and expression profiling under abiotic stresses of a soybean unknown function (DUF21) and cystathionine-β-synthase (CBS) domain-containing protein family[J]. Biochemistry Genetics,2021,59(1):83-113.
[17]Hao Q N,Shang W,Zhang C J,et al. Identification and comparative analysis of CBS domain-containing proteins in soybean (Glycine max) and the primary function of GmCBS21 in enhanced tolerance to low nitrogen stress[J]. Internation Journal of Molecular Science,2016,17(5):620.
[18]赵久然,王元东,邢锦丰,等. 高产优质、多抗广适玉米品种京科968的培育与应用[J]. 中国科技成果,2021,22(1):70-71.
[19]Kumar S,Stecher G,Li M,et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution,2018,35(6):1547-1549.
[20]Lescot M,Déhais P,Moreau Y,et al. PlantCARE:a database of plant cis—acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[21]Walley J,Sartor R,Shen Z,et al. Integration of omic networks in a developmental atlas of maize[J]. Science,2016,353(6301):814-818.
[22]Waters A,Makarevitch I,Noshay J,et al. Natural variation for gene expression responses to abiotic stress in maize[J]. Plant Journal,2017,89(4):706-717.
[23]Forestan C,Aiese-Cigliano R,Farinati S,et al. Stress-induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis[J]. Scientific Report,2016,6:30446.
[24]Yuan Y Q,Wang Y L,Yuan B S,et al. Impaired CBS-H2S signaling axis contributes to MPTP-induced neurodegeneration in a mouse model of Parkinsons disease[J]. Brain Behavior Immunity,2018,67:77-90.
[25]李金平,李丽帆,方显明. 胱硫醚β-合酶研究进展[J]. 西部医学,2006,18(5):657-659.
[26]Bertoni G. CBS domain proteins regulate redox homeostasis[J]. Plant Cell,2011,23(10):3562.
[27]Kushwaha H R,Singh A K,Sopory S K,et al. Genome wide expression analysis of CBS domain containing proteins in Arabidopsis thaliana (L.) Heynh and Oryza sativa L. reveals their developmental and stress regulation[J]. BMC Genomics,2009,10:200.
[28]Xu G X,Guo C,Shan H Y,et al. Divergence of duplicate genes in exon-intron structure[J]. PNAS,2012,109(4):1187-1192.
[29]张新宁,邢真真,李静,等. 小麦MBD基因家族的鉴定和特征分析[J]. 西北植物学报,2021,41(5):746-756.
[30]Fu M,Wu C,Li X,et al. Genome-wide identification and expression analysis of CsCaM/CML gene family in response to low-temperature and salt stresses in Chrysanthemum seticuspe[J]. Plants,2022,11(13):1760.
[31]Zhang Z J,Huang B,Chen J L,et al. Genome-wide identification of JRL genes in moso bamboo and their expression profiles in response to multiple hormones and abiotic stresses[J]. Frontier in Plant Science,2022,12:809666.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(4):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(4):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(4):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(4):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(4):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(4):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(4):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(4):77.

备注/Memo

备注/Memo:
收稿日期:2023-04-25
基金项目:福建省科技计划公益类专项(编号:2022R1027002、2021R1027001);福建省农业高质量发展超越“5511”协同创新工程项目(编号:XTCXGC2021002)。
作者简介:陈子强(1988—),男,福建泰宁人,博士,助理研究员,从事玉米分子育种研究。E-mail:402253716@qq.com。
通信作者:田大刚,博士,副研究员,从事玉米分子育种研究,E-mail:tdg@fjage.org;王锋,博士,研究员,主要从事水稻生物技术研究,E-mail:wf@fjage.org。
更新日期/Last Update: 2024-03-20