|本期目录/Table of Contents|

[1]王雨菡,陈莲,张培珍,等.根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述)[J].江苏农业科学,2024,52(5):19-27.
 Wang Yuhan,et al.Response and remediation of root exudates and rhizosphere microorganisms to soil heavy metal pollution:a review[J].Jiangsu Agricultural Sciences,2024,52(5):19-27.
点击复制

根系分泌物与根际微生物对土壤重金属污染的响应与修复作用(综述)(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第5期
页码:
19-27
栏目:
专论与综述
出版日期:
2024-03-05

文章信息/Info

Title:
Response and remediation of root exudates and rhizosphere microorganisms to soil heavy metal pollution:a review
作者:
王雨菡12陈莲2张培珍1王振江23林森2唐翠明23罗国庆23钟建武2李智毅2王圆2
1.广东海洋大学电子与信息工程学院,广东湛江524088; 2.广东省农业科学院蚕业与农产品加工研究所,广东广州510610; 3.农业农村部华南都市农业重点实验室,广东广州510610
Author(s):
Wang Yuhanet al
关键词:
根系分泌物土壤重金属植物修复根际微生物
Keywords:
-
分类号:
X53
DOI:
-
文献标志码:
A
摘要:
我国土壤重金属污染形势严峻,对粮食安全与人体健康构成严重威胁,土壤重金属污染修复是目前急需解决的环境问题之一。植物修复作为一种绿色安全、环境友好的生物修复技术,近年来备受关注,其发展取得显著成效。根系分泌物是利用生物修复重金属污染土壤过程中的关键物质,是植物与土壤微生物进行物质交换和信息传递的重要载体,在植物响应污染物胁迫及污染修复中扮演重要角色。研究根系分泌物和根际微生物对土壤重金属污染的响应与修复作用,揭示两者动态协同作用机制,对深入了解植物修复重金属污染土壤的过程与机理具有重要意义。本文归纳梳理了根系分泌物的影响因素与现有研究方法,系统总结了多种草本植物根系分泌物和根际微生物在重金属胁迫下的响应与主要修复机制,以及根系分泌物-根际微生物互作对重金属污染土壤的修复作用;并对根系分泌物介导下植物-根际微生物协同修复重金属污染土壤研究过程存在的难题和未来研究方向进行讨论与展望。结果表明,在重金属胁迫下,根系分泌物的组成和数量均发生显著变化;根系分泌物对重金属污染土壤的修复机制主要包括活化与固化;根系分泌物是影响根际微生物群落形成的重要因素,根际微生物对根系分泌物也具有一定调控功能,两者互作在土壤重金属的消减中发挥了重要作用。本文旨在为根系分泌物-根际微生物相互作用机制的深化研究及植物修复技术的优化应用提供理论参考。
Abstract:
-

参考文献/References:

[1]胡含秀,周晓天,张慧敏,等. 重金属污染耕地安全利用钝化材料作用机制及效果研究进展[J]. 江苏农业科学,2023,51(8):26-33.
[2]孙鑫,娄燕宏,王会,等. 重金属污染土壤的植物强化修复研究进展[J]. 土壤通报,2017,48(4):1008-1013.
[3]Yan A,Wang Y M,Tan S N,et al. Phytoremediation:a promising approach for revegetation of heavy metal-polluted land[J]. Frontiers in Plant Science,2020,11:359.
[4]Wu Y F,Li X,Yu L,et al. Review of soil heavy metal pollution in China:spatial distribution,primary sources,and remediation alternatives[J]. Resources,Conservation and Recycling,2022,181:106261.
[5]张颖,赵欣,张圣虎,等. 竹类植物修复重金属污染土壤的研究进展[J]. 生态与农村环境学报,2021,37(1):30-38.
[6]赵宇,艾雯妍,文思颖,等. 微生物-植物联合修复镉砷污染农田土壤技术与应用[J]. 生态毒理学报,2022,17(6):144-162.
[7]Ali H,Khan E,Sajad M A.Phytoremediation of heavy metals—Concepts and applications[J]. Chemosphere,2013,91(7):869-881.
[8]Saravanan A,Jeevanantham S,Narayanan V A,et al. Rhizoremediatio—A promising tool for the removal of soil contaminants:a review[J]. Journal of Environmental Chemical Engineering,2020,8(2):103543.
[9]莫思琪,曹旖旎,谭倩.根系分泌物在重金属污染土壤生态修复中的作用机制研究进展[J]. 生态学杂志,2022,41(2):382-392.
[10]杨富玲,石杨,李斌,等. 植物根系分泌物在污染及沙化土壤修复中的应用现状与前景[J]. 应用生态学报,2021,32(7):2623-2632.
[11]吴林坤,林向民,林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报,2014,38(3):298-310.
[12]王亚,冯发运,葛静,等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报,2022,42(3):829-842.
[13]王姣龙,谌小勇,闫文德,等. 4种绿化树种根系分泌物中的化学成分分析[J]. 西北农林科技大学学报(自然科学版),2016,44(10):107-113.
[14]林新坚,兰忠明,张辉,等. 不同紫云英基因型根系分泌物中有机酸成分分析[J]. 草业学报,2014,23(4):146-152.
[15]王玉萍,赵杨景,邵迪,等. 西洋参根系分泌物的初步研究[J]. 中国中药杂志,2005,30(3):70-72.
[16]谢振华,赵尊练,武国平,等. 线辣椒不同生育阶段根系分泌物的组分分析[J]. 西北农业学报,2012,21(8):175-181,206.
[17]刘文菊,张西科,张福锁. 根分泌物对根际难溶性镉的活化作用及对水稻吸收、运输镉的影响[J]. 生态学报,2000,20(3):448-451.
[18]Ishikawa S,Adu-Gyamfi J J,Nakamura T,et al. Genotypic variability in phosphorus solubilizing activity of root exudates by pigeonpea grown in low-nutrient environments[M]//Adu-Gyamfi J J.Food security in nutrient-stressed environments:exploiting plants genetic capabilities.Dordrecht:Springer,2002:111-121.
[19]Liu B B,Wu L,Pan P,et al. Response of root exudates of Bruguiera gymnorrhiza (L.) to exposure of polycyclic aromatic hydrocarbons[J]. Frontiers in Environmental Science,2022,9:787002.
[20]Tao Q,Zhao J W,Li J X,et al. Unique root exudate tartaric acid enhanced cadmium mobilization and uptake in Cd-hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials,2020,383:121177.
[21]Groleau-Renaud V,Plantureux S,Guckert A. Influence of plant morphology on root exudation of maize subjected to mechanical impedance in hydroponic conditions[J]. Plant and Soil,1998,201(2):231-239.
[22]Dijkstra F A,Cheng W X. Moisture modulates rhizosphere effects on C decomposition in two different soil types[J]. Soil Biology and Biochemistry,2007,39(9):2264-2274.
[23]Ma J Q,Xie Y,Yang Y S,et al. AMF colonization affects allelopathic effects of Zea mays L. root exudates and community structure of rhizosphere bacteria[J]. Frontiers in Plant Science,2022,13:1050104.
[24]朱晓琴,张涵,刘士龙,等. 丛枝菌根真菌缓解对羟基苯甲酸抑制草莓生长的作用[J]. 北方园艺,2017(14):44-50.
[25]涂书新,吴佳. 植物根系分泌物研究方法评述[J]. 生态环境学报,2010,19(10):2493-2500.
[26]胡焱,王海娟,王宏镔. 镉胁迫下紫茉莉生物碱的化感效应[J]. 农业环境科学学报,2022,41(10):2139-2157.
[27]Vranova V,Rejsek K,Skene K R,et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose:a review[J]. Journal of Plant Nutrition and Soil Science,2013,176(2):175-199.
[28]于培鑫. 吊兰根系分泌物组成对铅胁迫的响应及其对铅污染土壤修复效果的影响[D]. 芜湖:安徽师范大学,2019.
[29]Huang G Y,Guo G G,Yao S Y,et al. Organic acids,amino acids compositions in the root exudates and Cu-accumulation in castor (Ricinus communis L.) under Cu stress[J]. International Journal of Phytoremediation,2016,18(1):33-40.
[30]Jones D L. Organic acids in the rhizosphere:a critical review[J]. Plant and Soil,1998,205(1):25-44.
[31]Xu W H,Liu H,Ma Q F,et al. Root exudates,rhizosphere Zn fractions,and Zn accumulation of ryegrass at different soil Zn levels[J]. Pedosphere,2007,17(3):389-396.
[32]Ma W M,Tang S H,Dengzeng Z M,et al. Root exudates contribute to belowground ecosystem hotspots:a review[J]. Frontiers in Microbiology,2022,13:937940.
[33]郭婉玑,张子良,刘庆,等. 根系分泌物收集技术研究进展[J]. 应用生态学报,2019,30(11):3951-3962.
[34]郜红建,常江,张自立,等. 研究植物根系分泌物的方法[J]. 植物生理学通讯,2003,39(1):56-60.
[35]Wadhwa K,Narula N. A novel technique to collect root exudates from mustard (Brassica juncea)[J]. Journal of Basic Microbiology,2012,52(5):613-615.
[36]刘帅,黄坤,陈乐,等. 烟草根系分泌物及其化感作用研究进展[J]. 亚热带农业研究,2018,14(1):61-65.
[37]Qiao M F,Xiao J,Yin H J,et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation[J]. Chemistry and Ecology,2014,30(6):555-565.
[38]丁爱芳. 新型根系分泌物采样装置的介绍与应用[J]. 土壤通报,2016,47(3):746-750.
[39]Tang C S,Young C C.Collection and identification of allelopathic compounds from the undisturbed root system of Bigalta limpograss (Hemarthria altissima)[J]. Plant Physiology,1982,69(1):155-160.
[40]徐炜杰,郭佳,赵敏,等. 重金属污染土壤植物根系分泌物研究进展[J]. 浙江农林大学学报,2017,34(6):1137-1148.
[41]杨晔,陈英旭,孙振世. 重金属胁迫下根际效应的研究进展[J]. 农业环境保护,2001,20(1):55-58.
[42]刘长风,段士鑫,张晓宇,等. 植物根系分泌物在重金属胁迫下的响应研究进展[J]. 福建农业学报,2021,36(12):1506-1514.
[43]Liu J J,Zhang D Z,Luo Y,et al. Cadmium tolerance and accumulation from the perspective of metal ion absorption and root exudates in broomcorn millet[J]. Ecotoxicology and Environmental Safety,2023,250:114506.
[44]唐杰,徐浩洋,王昌全,等. 镉胁迫对3个水稻品种(系)根系生长及有机酸和氨基酸分泌的影响[J]. 湖南农业大学学报(自然科学版),2016,42(2):118-124.
[45]秦丽,李元,祖艳群,等. 镉胁迫对续断菊Sonchus asper L.Hill.根系分泌物的影响[J]. 生态环境学报,2012,21(3):540-544.
[46]刘宛茹. 湿地植物红蛋对重金属镉的解毒机制研究[D]. 南宁:广西大学,2013.
[47]Pinto A P,Simotildees I,Mota A M. Cadmium impact on root exudates of sorghum and maize plants:a speciation study[J]. Journal of Plant Nutrition,2008,31(10):1746-1755.
[48]UdDin I,Bano A,Masood S. Chromium toxicity tolerance of Solanum nigrum L. and Parthenium hysterophorus L. plants with reference to ion pattern,antioxidation activity and root exudation[J]. Ecotoxicology and Environmental Safety,2015,113:271-278.
[49]罗庆,孙丽娜,王辉. 基于代谢组学方法的两种生态型东南景天根系分泌物差异研究[J]. 环境化学,2016,35(11):2353-2361.
[50]商慧文,陈江华,张艳玲,等. 不同Cd积累基因型烟草根系分泌低分子量有机酸的差异[J]. 烟草科技,2014,47(4):88-92.
[51]Zhou M,Zhi Y,Dai Y Y,et al. The detoxification mechanisms of low-accumulating and non-low-accumulating medicinal plants under Cd and Pb stress[J]. RSC Advances,2020,10(71):43882-43893.
[52]Chen J R,Shafi M,Wang Y,et al. Organic acid compounds in root exudation of moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals[J]. Environmental Science and Pollution Research,2016,23(20):20977-20984.
[53]Chiang P N,Wang M K,Chiu C Y,et al. Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower[J]. Environmental Toxicology,2006,21(5):479-488.
[54]Javed M T,Akram M S,Habib N,et al. Deciphering the growth,organic acid exudations,and ionic homeostasis of Amaranthus viridis L.and Portulaca oleracea L.under lead chloride stress[J]. Environmental Science and Pollution Research,2018,25(3):2958-2971.
[55]Fu H J,Yu H Y,Li T X,et al. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.)[J]. Ecotoxicology and Environmental Safety,2018,150:168-175.
[56]Yang Y,Shen Q Y. Phytoremediation of cadmium-contaminated wetland soil with Typha latifolia L. and the underlying mechanisms involved in the heavy-metal uptake and removal[J]. Environmental Science and Pollution Research,2020,27(5):4905-4916.
[57]Chiang P N,Chiu C Y,Wang M K,et al. Low-molecular-weight organic acids exuded by millet [Setaria italica (L.) Beauv.] roots and their effect on the remediation of cadmium-contaminated soil[J]. Soil Science,2011,176(1):33-38.
[58]Jin J,Song Z Y,Zhao B,et al. Physiological and metabolomics responses of Hydrangea macrophylla (Thunb.) Ser. and Hydrangea strigosa Rehd. to lead exposure[J]. Ecotoxicology and Environmental Safety,2022,243:113960.
[59]赵宽,万昕,邢德科,等. 低分子量有机酸对土壤有效磷及重金属释放影响的研究进展[J]. 土壤通报,2022,53(5):1228-1236.
[60]廉欢. 黑麦草对铀污染土壤植物提取修复的根际效应研究[D]. 南昌:东华理工大学,2018.
[61]罗庆. 镉、铅胁迫下东南景天根系分泌物的代谢组学研究[D]. 沈阳:东北大学,2016.
[62]陈英旭,林琦,陆芳,等. 有机酸对铅、镉植株危害的解毒作用研究[J]. 环境科学学报,2000,20(4):467-472.
[63]Chen H H,Chen X F,Zheng Z C,et al. Characterization of copper-induced-release of exudates by Citrus sinensis roots and their possible roles in copper-tolerance[J]. Chemosphere,2022,308:136348.
[64]丁娜,林华,张学洪,等. 植物根系分泌物与根际微生物交互作用机制研究进展[J]. 土壤通报,2022,53(5):1212-1219.
[65]Chaudhry Q,Blom-Zandstra M,Gupta S K,et al. Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment[J]. Environmental Science and Pollution Research,2005,12(1):34-48.
[66]安凤秋.外源重金属铅和镉对土壤生物活性及微生物群落多样性的影响研究[D]. 杨凌:西北农林科技大学,2018.
[67]李小林,颜森,张小平,等. 铅锌矿区重金属污染对微生物数量及放线菌群落结构的影响[J]. 农业环境科学学报,2011,30(3):468-475.
[68]滕应,黄昌勇,骆永明,等. 铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J]. 土壤学报,2004,41(1):113-119.
[69]Niu H,Leng Y F,Li X C,et al. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation[J]. Chemosphere,2021,269:128765.
[70]Xie J Y,Xu X X,Zhang S R,et al. Activation and tolerance of Siegesbeckia orientalis L. rhizosphere to Cd stress[J]. Frontiers in Plant Science,2023,14:1145012.
[71]Liu C J,Lin H,Li B,et al. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil[J]. Ecotoxicology and Environmental Safety,2020,202:110958.
[72]Caracciolo A B,Terenzi V. Rhizosphere microbial communities and heavy metals[J]. Microorganisms,2021,9(7):1462.
[73]Chen L,Luo S L,Xiao X,et al. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils[J]. Applied Soil Ecology,2010,46(3):383-389.
[74]Shi J Y,Lin H R,Yuan X F,et al. Enhancement of copper availability and microbial community changes in rice rhizospheres affected by sulfur[J]. Molecules,2011,16(2):1409-1417.
[75]Andreazza R,Okeke B C,Lambais M R,et al. Bacterial stimulation of copper phytoaccumulation by bioaugmentation with rhizosphere bacteria[J]. Chemosphere,2010,81(9):1149-1154.
[76]Bai J,Yang X H,Du R Y,et al. Biosorption mechanisms involved in immobilization of soil Pb by Bacillus subtilis DBM in a multi-metal-contaminated soil[J]. Journal of Environmental Sciences,2014,26(10):2056-2064.
[77]Sandrin T R,Chech A M,Maier R M. A rhamnolipid biosurfactant reduces cadmium toxicity during naphthalene biodegradation[J]. Applied and Environmental Microbiology,2000,66(10):4585-4588.
[78]Hu L F,Robert C A M,Cadot S,et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications,2018,9:2738.
[79]Hromádko L,Vranová V,Techer D,et al. Composition of root exudates of Miscanthus×giganteus Greef et Deu[J]. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis,2010,58(1):71-76.
[80]Rudrappa T,Czymmek K J,Pare P W,et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148(3):1547-1556.
[81]Jin J Y,Mi R D,Li Q,et al. Bacillus thuringiensis enhances the ability of ryegrass to remediate cadmium-contaminated soil[J]. Sustainability,2023,15(6):5177.
[82]Sahito Z A,Zehra A,Chen S N,et al. Rhizobium rhizogenes-mediated root proliferation in Cd/Zn hyperaccumulator Sedum alfredii and its effects on plant growth promotion,root exudates and metal uptake efficiency[J]. Journal of Hazardous Materials,2022,424:127442.
[83]Chen B,Zhang Y B,Rafiq M T,et al. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12:effects on plant growth and root exudates[J]. Chemosphere,2014,117:367-373.、

相似文献/References:

[1]杨亚琴.不同园林绿化植物对土壤重金属的吸收富集研究[J].江苏农业科学,2016,44(03):364.
 Yang Yaqing.Absorption and accumulation of different ornamental plants to heavy metal in soil[J].Jiangsu Agricultural Sciences,2016,44(5):364.
[2]张晓东,热沙来提·买买提,刘志刚.荠菜对土壤重金属镉(Cd)和铅(Pb)的修复效应[J].江苏农业科学,2016,44(04):477.
 Zhang Xiaodong,et al.Phytoremediation of cadmium and lead polluted soil by Capsella bursa-pastoris[J].Jiangsu Agricultural Sciences,2016,44(5):477.
[3]兰英,沈晓凤,严铸云,等.不同地理种源丹参根系分泌物的GC-MS比较分析[J].江苏农业科学,2016,44(01):301.
 Lan Ying,et al.GC-MS comparative analysis of root exudates of Salvia miltiorrhiza Bge. from different geographical provenance[J].Jiangsu Agricultural Sciences,2016,44(5):301.
[4]付学鹏,吴凤芝,周新刚.间作防控作物土传病害的机理研究进展[J].江苏农业科学,2016,44(01):16.
 Fu Xuepeng,et al.Research progress on mechanism of plant soil-borne diseases control in intercropping system[J].Jiangsu Agricultural Sciences,2016,44(5):16.
[5]李小曼,徐梦洁,刘勤,等.小尺度区域重金属含量空间插值方法比较——以Hg元素为例[J].江苏农业科学,2015,43(12):426.
 Li Xiaoman,et al.Comparative study on spatial interpolation methods for detection of heavy metal contents in small regional scale—Taking Hg element as an example[J].Jiangsu Agricultural Sciences,2015,43(5):426.
[6]樊佳奇,牛来春,庞磊.云南地区不同园林植物对土壤重金属的吸收富集特征[J].江苏农业科学,2016,44(07):467.
 Fan Jiaqi,et al.Absorption and accumulation characteristics of different ornamental plants to soil heavy metals in Yunnan Province[J].Jiangsu Agricultural Sciences,2016,44(5):467.
[7]杨海婧,田丰,马永清,等.小麦、蚕豆和油菜浸提液对秦艽种子萌发的影响[J].江苏农业科学,2017,45(05):145.
 Yang Haijing,et al.Effects of wheat,broad bean and oilseed rape extracts on seed germination of Gentianae macrophylla[J].Jiangsu Agricultural Sciences,2017,45(5):145.
[8]王柳茜,余丹,王冬艳,等.吉林省黑土区土壤重金属元素的生物有效性转化效率特征及相互关系[J].江苏农业科学,2017,45(08):274.
 Wang Liuxi,et al.Bioavailability of heavy metal elements in black soil region of Jilin Province and their relationships[J].Jiangsu Agricultural Sciences,2017,45(5):274.
[9]方松林.不同园林植物对土壤重金属的吸收及修复效应[J].江苏农业科学,2017,45(14):210.
 Fang Songlin.Effects of different garden plants on heavy metal absorption and remediation of soil[J].Jiangsu Agricultural Sciences,2017,45(5):210.
[10]夏冰,司志国.郑州市不同污染区主要绿化树种对土壤重金属的富集能力研究[J].江苏农业科学,2017,45(18):123.
 Xia Bing,et al.Study on soil heavy metal accumulation capability of main greening tree species in different contaminated areas of Zhengzhou City, Henan Province[J].Jiangsu Agricultural Sciences,2017,45(5):123.

备注/Memo

备注/Memo:
收稿日期:2023-07-04
基金项目:广州市基础与应用基础研究项目(编号:202201010672);国家自然科学基金青年科学基金(编号:42007379);广东省农业科学院“优秀博士”人才引进项目(编号:R2021YJ-YB3007)。
作者简介:王雨菡(1999—),女,山东潍坊人,硕士研究生,研究方向为土壤生态修复。E-mail:wangyuhan9908@163.com。
通信作者:张培珍,博士,教授,研究方向为信号与信息处理,E-mail:zpzhen7242@163.com;陈莲,博士,助理研究员,研究方向为土壤生态修复,E-mail:chenlian@gdaas.cn。
更新日期/Last Update: 2024-03-05