|本期目录/Table of Contents|

[1]赵胜利,Mujahid Hussain,王国宾,等.基于无人机遥感的作物长势监测研究进展[J].江苏农业科学,2024,52(8):8-15.
 Zhao Shengli,et al.Research progress of crop growth monitoring based on UAV remote sensing[J].Jiangsu Agricultural Sciences,2024,52(8):8-15.
点击复制

基于无人机遥感的作物长势监测研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第8期
页码:
8-15
栏目:
专论与综述
出版日期:
2024-04-20

文章信息/Info

Title:
Research progress of crop growth monitoring based on UAV remote sensing
作者:
赵胜利12 Mujahid Hussain123 王国宾123 卞志豪12 王猛12 兰玉彬123
1.山东理工大学农业工程与食品科学学院,山东淄博 255049; 2.山东理工大学生态无人农场研究院,山东淄博 255049; 3.山东省农业航空智能装备工程技术研究中心,山东淄博 255049
Author(s):
Zhao Shengliet al
关键词:
无人机遥感农业长势应用进展
Keywords:
-
分类号:
S127
DOI:
-
文献标志码:
A
摘要:
无人机遥感技术作为一种新型的农业技术,为精准农业领域的发展提供了重要的技术支持。与传统监测方法相比,无人机遥感具有成本低、时效性强、无大气干扰、分辨率高等优点,为农业信息采集提供了新的工具。无人机农业遥感技术能够高效、无损地精确采集农业遥感数据,对作物长势进行实时监测,为农业生产提供重要的获取空间数据途径。近年来,随着无人机技术和遥感技术的不断发展和成熟,无人机农业遥感技术的应用范围逐步扩大,涵盖了作物生长监测、精准施肥、精准灌溉、病虫害预警等多个领域。本文重点介绍无人机遥感技术在作物生长监测中的应用,主要介绍了无人机遥感系统的组成、无人机遥感平台和传感器的类型和特点、基于无人机遥感图像数据处理的关键步骤以及作物长势监测的重要指标,综合评估了无人机遥感技术在作物长势监测方面应用的研究现状和存在的问题旨在为后续的无人机遥感技术在作物长势监测中的研究提供参考。
Abstract:
-

参考文献/References:

[1]Huang Y B,Chen Z X,Yu T,et al. Agricultural remote sensing big data:management and applications[J]. Journal of Integrative Agriculture,2018,17(9):1915-1931.
[2]刘建刚,赵春江,杨贵军,等. 无人机遥感解析田间作物表型信息研究进展[J]. 农业工程学报,2016,32(24):98-106.
[3]胡健波,张健. 无人机遥感在生态学中的应用进展[J]. 生态学报,2018,38(1):20-30.
[4]晏磊,廖小罕,周成虎,等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报,2019,21(4):476-495.
[5]孙刚,黄文江,陈鹏飞,等. 轻小型无人机多光谱遥感技术应用进展[J]. 农业机械学报,2018,49(3):1-17.
[6]Zhang H D,Wang L Q,Tian T,et al. A review of unmanned aerial vehicle low-altitude remote sensing (UAV-LARS) use in agricultural monitoring in China[J]. Remote Sensing,2021,13(6):1221.
[7]兰玉彬,邓小玲,曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业,2019,1(2):1-19.
[8]郭庆华,吴芳芳,庞树鑫,等. Crop 3D—基于激光雷达技术的作物高通量三维表型测量平台[J]. 中国科学(生命科学),2016,46(10):1210-1221.
[9]史舟,梁宗正,杨媛媛,等. 农业遥感研究现状与展望[J]. 农业机械学报,2015,46(2):247-260.
[10]Wang G B,Lan Y B,Qi H X,et al. Field evaluation of an unmanned aerial vehicle (UAV) sprayer:effect of spray volume on deposition and the control of pests and disease in wheat[J]. Pest Management Science,2019,75(6):1546-1555.
[11]Zhan Y L,Chen P C,Xu W C,et al. Influence of the downwash airflow distribution characteristics of a plant protection UAV on spray deposit distribution[J]. Biosystems Engineering,2022,216:32-45.
[12]纪景纯,赵原,邹晓娟,等. 无人机遥感在农田信息监测中的应用进展[J]. 土壤学报,2019,56(4):773-784.
[13]田婷,张青,张海东. 无人机遥感在作物监测中的应用研究进展[J]. 作物杂志,2020(5):1-8.
[14]韩文霆,李广,苑梦婵,等. 基于无人机遥感技术的玉米种植信息提取方法研究[J]. 农业机械学报,2017,48(1):139-147.
[15]Wang L L,Zhao Y J,Liu S B,et al. Precision detection of dense plums in orchards using the improved YOLO v4 model[J]. Frontiers in Plant Science,2022,13:839269.
[16]杨国峰,何勇,冯旭萍,等. 无人机遥感监测作物病虫害胁迫方法与最新研究进展[J]. 智慧农业(中英文),2022,4(1):1-16.
[17]Chen P C,Douzals J P,Lan Y B,et al. Characteristics of unmanned aerial spraying systems and related spray drift:a review[J]. Frontiers in Plant Science,2022,13:870956.
[18]Xiang H T,Tian L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV)[J]. Biosystems Engineering,2011,108(2):174-190.
[19]Yang G J,Liu J G,Zhao C J,et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping:current status and perspectives[J]. Frontiers in Plant Science,2017,8:1111.
[20]雷剑. 轻小型无人机遥感在精准农业中的应用研究[J]. 农业与技术,2022,42(3):41-43.
[21]Petrescu R V,Aversa R,Akash B,et al. Unmanned helicopters[J]. Journal of Aircraft and Spacecraft Technology,2017,1(4):241-248.
[22]Segui-Gasco P,Al-Rihani Y,Shin H S,et al. A novel actuation concept for a multi rotor UAV[J]. Journal of Intelligent & Robotic Systems,2014,74(1):173-191.
[23]Cai G W,Lum K Y,Chen B M,et al. A brief overview on miniature fixed-wing unmanned aerial vehicles[C]//IEEE ICCA.Xiamen,China.IEEE,2010:285-290.
[24]Asadzadeh S,de Oliveira W J,de Souza Filho C R. UAV-based remote sensing for the petroleum industry and environmental monitoring:state-of-the-art and perspectives[J]. Journal of Petroleum Science and Engineering,2022,208:109633.
[25]Chen R Q,Zhang C J,Xu B,et al. Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning[J]. Computers and Electronics in Agriculture,2022,201:107275.
[26]马代健. 无人机热红外图像采集系统开发与应用[D]. 杨凌:西北农林科技大学,2018.
[27]de Almeida C T,Galvo L S,de Oliveira Cruz e Arago L E,et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms[J]. Remote Sensing of Environment,2019,232:111323.
[28]Dimov D,Uhl J H,Lw F,et al. Sugarcane yield estimation through remote sensing time series and phenology metrics[J]. Smart Agricultural Technology,2022,2:100046.
[29]Franklin S E,Ahmed O S,Williams G. Northern conifer forest species classification using multispectral data acquired from an unmanned aerial vehicle[J]. Photogrammetric Engineering & Remote Sensing,2017,83(7):501-507.
[30]Li C C,Ma C Y,Cui Y Q,et al. UAV hyperspectral remote sensing estimation of soybean yield based on physiological and ecological parameter and meteorological factor in China[J]. Journal of the Indian Society of Remote Sensing,2021,49(4):873-886.
[31]郭庆华,胡天宇,刘瑾,等. 轻小型无人机遥感及其行业应用进展[J]. 地理科学进展,2021,40(9):1550-1569.
[32]龚健雅,宦麟茜,郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报,2022,51(6):873-884.
[33]王斯健. 控制点图元库的卫星影像高精度几何校正方法研究[J]. 测绘通报,2021(增刊1):183-187.
[34]樊彦国,柴江龙,许明明,等. 基于ORB与RANSAC融合改进的图像配准[J]. 光学精密工程,2019,27(3):702-717.
[35]侯瑞,邓少平,张立亚. 高分辨率SAR影像正射纠正试验[J]. 测绘科学,2015,40(10):153-156.
[36]Kumar P,Henikoff S,Ng P C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm[J]. Nature Protocols,2009,4:1073-1081.
[37]江智,江德港,黄子杰,等. 基于IB-SURF算法的无人机图像拼接技术研究[J]. 计算机工程与应用:2024,60(3):263-269.
[38]Chater A,Lasfar A. New approach to the identification of the easy expression recognition system by robust techniques (SIFT,PCA-SIFT,ASIFT and SURF)[J]. TELKOMNIKA (Telecommunication Computing Electronics and Control),2020,18(2):695.
[39]汪小钦,王苗苗,王绍强,等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报,2015,31(5):152-159.
[40]Du M M,Noboru N,Atsushi I,et al. Multi-temporal monitoring of wheat growth by using images from satellite and unmanned aerial vehicle[J]. International Journal of Agricultural and Biological Engineering,2017,10(5):1-13.
[41]Zhong Y F,Wang X Y,Xu Y,et al. Mini-UAV-borne hyperspectral remote sensing:from observation and processing to applications[J]. IEEE Geoscience and Remote Sensing Magazine,2018,6(4):46-62.
[42]Feng L W,Zhang Z,Ma Y C,et al. Alfalfa yield prediction using UAV-based hyperspectral imagery and ensemble learning[J]. Remote Sensing,2020,12(12):2028.
[43]Yu F H,Xu T Y,Du W,et al. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering,2017,10(4):150-157.
[44]兰玉彬,朱梓豪,邓小玲,等. 基于无人机高光谱遥感的柑橘黄龙病植株的监测与分类[J]. 农业工程学报,2019,35(3):92-100.
[45]高林,杨贵军,于海洋,等. 基于无人机高光谱遥感的冬小麦叶面积指数反演[J]. 农业工程学报,2016,32(22):113-120.
[46]裴浩杰,冯海宽,李长春,等. 基于综合指标的冬小麦长势无人机遥感监测[J]. 农业工程学报,2017,33(20):74-82.
[47]林娜,陈宏,赵健,等. 轻小型无人机遥感在精准农业中的应用及展望[J]. 江苏农业科学,2020,48(20):43-48.
[48]奚雪,赵庚星. 基于无人机多光谱遥感的冬小麦叶绿素含量反演及监测[J]. 中国农学通报,2020,36(20):119-126.
[49]刘涛,张寰,王志业,等. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量[J]. 农业工程学报,2021,37(19):65-72.
[50]周敏姑,邵国敏,张立元,等. 基于无人机遥感的冬小麦叶绿素含量多光谱反演[J]. 节水灌溉,2019(9):40-45.
[51]王羿,丁鸣鸣,何菁,等. 基于不同建模方法的土壤pH值无人机遥感影像反演[J]. 江苏农业科学,2022,50(14):224-231.
[52]裴信彪,吴和龙,马萍,等. 基于无人机遥感的不同施氮水稻光谱与植被指数分析[J]. 中国光学,2018,11(5):832-840.
[53]王玉娜,李粉玲,王伟东. 基于无人机高光谱的冬小麦氮素营养监测[J]. 农业工程学报,2020,36(22):31-39.
[54]Tao H L,Feng H K,Xu L J,et al. Estimation of crop growth parameters using UAV-based hyperspectral remote sensing data[J]. Sensors,2020,20(5):1296.
[55]Yuan H H,Yang G J,Li C C,et al. Retrieving soybean leaf area index from unmanned aerial vehicle hyperspectral remote sensing:analysis of RF,ANN,and SVM regression models[J]. Remote Sensing,2017,9(4):309.
[56]魏青,张宝忠,魏征,等. 基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究[J]. 麦类作物学报,2020,40(3):365-372.
[57]张智韬,谭丞轩,许崇豪,等. 基于无人机多光谱遥感的玉米根域土壤含水率研究[J]. 农业机械学报,2019,50(7):246-257.
[58]汤建栋. 基于无人机遥感的玉米水分利用效率与生物量估算方法[D]. 杨凌:西北农林科技大学,2021.
[59]邵国敏,王亚杰,韩文霆,等. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法[J]. 智慧农业(中英文),2020,2(3):118-128.
[60]Li S Y,Yuan F,Ata-UI-Karim S T,et al. Combining color indices and textures of UAV-based digital imagery for rice LAI estimation[J]. Remote Sensing,2019,11(15):1763.
[61]Zhang Y M,Ta N,Guo S,et al. Combining spectral and textural information from UAV RGB images for leaf area index monitoring in kiwifruit orchard[J]. Remote Sensing,2022,14(5):1063.
[62]曹中盛,李艳大,黄俊宝,等. 基于无人机数码影像的水稻叶面积指数监测[J]. 中国水稻科学,2022,36(3):308-317.
[63]Yao X,Wang N,Liu Y,et al. Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery[J]. Remote Sensing,2017,9(12):1304.
[64]邓江,谷海斌,王泽,等. 基于无人机遥感的棉花主要生育时期地上生物量估算及验证[J]. 干旱地区农业研究,2019,37(5):55-61,69.

相似文献/References:

[1]陈鹤群,雷少刚.TerraSAR-X土壤水分反演研究进展[J].江苏农业科学,2013,41(04):327.
[2]王丽爱,谭昌伟,马昌,等.农情信息遥感监测预报模型构建算法研究进展[J].江苏农业科学,2013,41(11):1.
 Wang Liai,et al.Research progress of remote sensing forecast modeling algorithms on crop information[J].Jiangsu Agricultural Sciences,2013,41(8):1.
[3]李章成,李源洪,魏来,等.基于SPOT5影像分析植被指数与水稻叶面积指数和产量的相关性[J].江苏农业科学,2014,42(01):284.
 Li Zhangcheng,et al.Study on correlation between vegetation index and leaf area index and yield of rice based on SPOT5 image analysis[J].Jiangsu Agricultural Sciences,2014,42(8):284.
[4]康婷婷,居为民,李秉柏.水稻叶面积指数遥感反演方法对比分析[J].江苏农业科学,2015,43(05):366.
 Kang Tingting,et al.Contrastive analysis of remote sensing inversion method of rice leaf area index[J].Jiangsu Agricultural Sciences,2015,43(8):366.
[5]马驰.松辽平原土地盐碱化动态监测与遥感分析[J].江苏农业科学,2016,44(07):495.
 Ma Chi.Dynamic monitoring and remote sensing analysis of soil salinization in Songliao Plain[J].Jiangsu Agricultural Sciences,2016,44(8):495.
[6]田苗,童杨辉.TRMM卫星降水数据在江苏省的适用性分析[J].江苏农业科学,2016,44(12):440.
 Tian Miao,et al.Applicability analysis of TRMM precipitation data in Jiangsu Province[J].Jiangsu Agricultural Sciences,2016,44(8):440.
[7]刘远,周买春.遥感反演植被叶面积指数的不确定性来源综述[J].江苏农业科学,2017,45(12):12.
 Liu Yuan,et al.Uncertain sources of remote sensing inversion of vegetation leaf area index:an overview[J].Jiangsu Agricultural Sciences,2017,45(8):12.
[8]苏腾飞,刘全明,苏秀川.基于多种植被指数时间序列与机器学习的作物遥感分类研究[J].江苏农业科学,2017,45(16):219.
 Su Tengfei,et al.Study on crop remote sensing classification based on multiple vegetation index time series and machine learning[J].Jiangsu Agricultural Sciences,2017,45(8):219.
[9]李岩,尚士友,王晓娟,等.西乌珠穆沁典型草原植被盖度空间异质性研究[J].江苏农业科学,2017,45(22):283.
 Li Yan,et al.Study on spatial heterogeneity of vegetation coverage of Wuzhumuqin typical steppe[J].Jiangsu Agricultural Sciences,2017,45(8):283.
[10]孙世泽,汪传建,刘伟,等.无人机多光谱草地估产中的最佳波段组合研究[J].江苏农业科学,2018,46(04):190.
 Sun Shize,et al.Study on optimum band combination in estimating biomass of grassland based on UAV multispectral images[J].Jiangsu Agricultural Sciences,2018,46(8):190.
[11]苏瑞东.无人机在现代农业中的应用综述[J].江苏农业科学,2019,47(21):75.
 Su Ruidong.Application of UAVs in modern agriculture: a review[J].Jiangsu Agricultural Sciences,2019,47(8):75.

备注/Memo

备注/Memo:
收稿日期:2023-05-11
基金项目:山东省自然科学基金(编号:ZR2021QC154);山东省引进顶尖人才“一事一议”专项经费资助项目(编号:鲁政办字[2018]27号)。
作者简介:赵胜利(1998—),女,河南长葛人,硕士研究生,研究方向为棉花产量估测模型。E-mail:21403010286@sdut.edu.cn。
通信作者:兰玉彬,博士,教授,博士生导师,研究方向为精准农业航空应用技术。E-mail:ylan@sdut.edu.cn。
更新日期/Last Update: 2024-04-20