|本期目录/Table of Contents|

[1]肖艳梅,高沐甜,邱冠杰,等.玉米籽粒主要品质性状遗传分析与基因定位研究进展[J].江苏农业科学,2024,52(9):12-17.
 Xiao Yanmei,et al.Research progress on genetic analysis and gene mapping of main quality traits of maize grains[J].Jiangsu Agricultural Sciences,2024,52(9):12-17.
点击复制

玉米籽粒主要品质性状遗传分析与基因定位研究进展(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第9期
页码:
12-17
栏目:
专论与综述
出版日期:
2024-05-05

文章信息/Info

Title:
Research progress on genetic analysis and gene mapping of main quality traits of maize grains
作者:
肖艳梅1高沐甜1邱冠杰1廖志杰1贾魏1徐莹12罗红兵123黄成123
1.湖南农业大学农学院,湖南长沙 410128; 2.作物生理与分子生物学教育部重点实验室,湖南长沙 410128; 3. 湖南省玉米工程技术研究中心,湖南长沙 410128
Author(s):
Xiao Yanmeiet al
关键词:
玉米籽粒品质QTL基因
Keywords:
-
分类号:
S513.032
DOI:
-
文献标志码:
A
摘要:
玉米籽粒品质是玉米籽粒营养价值的重要决定因素,提高玉米籽粒品质是当前玉米育种工作的主要目标之一。玉米籽粒品质性状是典型的数量性状,受多个基因控制且易受环境因素的影响,具有复杂的遗传机制。近年来,众多研究者利用数量性状位点(quantitative trait locus,QTL)定位和全基因组关联分析(genome-wide association study,GWAS)等方法,全面解析了玉米籽粒品质性状的遗传基础,为玉米籽粒品质性状的遗传改良奠定了良好的基础。本文主要综述国内外玉米籽粒主要品质性状(蛋白质含量、淀粉含量、油分含量)相关QTL及功能基因的研究进展,根据优质玉米的品质需求,探讨各品质性状之间的相关性以及提高玉米籽粒品质的研究前景,以期为研究并改良玉米籽粒主要品质性状提供参考。
Abstract:
-

参考文献/References:

[1]Godfray H C J,Beddington J R,Crute I R,et al. Food security:the challenge of feeding 9 billion people[J]. Science,2010,327 (5967):812-818.
[2]Li G S,Wang D F,Yang R L,et al. Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing[J]. Proceedings of the National Academy of Sciences of the United states of America,2014,111(21):7582-7587.
[3]Zhang Z Y,Zheng X X,Yang J,et al. Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis[J]. Proceedings of the National Academy of Sciences of the United states of America,2016,113(39):10842-10847.
[4]韦小了,何腾兵. 玉米品质的形成及其调控[J]. 植物学研究,2022,11(4):541-551.
[5]Yang G,Dong Y,Li Y,et al. QTL verification of grain protein content and its correlation with oil content by using connected RIL populations of high-oil maize[J]. Genetics and Molecular Research,2014,13:881-894.
[6]Liu Y Y,Dong Y B,Niu S Z,et al. QTL identification of kernel composition traits with popcorn using both F2 ∶3 and BC2F2 populations developed from the same cross[J]. Journal of Cereal Science,2008,48(3):625-631.
[7]Zhang H D,Jin T T,Huang Y Q,et al. Identification of quantitative trait loci underlying the protein,oil and starch contents of maize in multiple environments[J]. Euphytica,2015,205:169-183.
[8]Guo Y Q,Yang X H,Chander S,et al. Identification of unconditional and conditional QTL for oil,protein and starch content in maize[J]. The Crop Journal,2013,1(1):34-42.
[9]Yang Z,Li X,Zhang N,et al. Detection of quantitative trait loci for kernel oil and protein concentration in a B73 and Zheng58 maize cross[J]. Genetics and Molecular Research,2016,15(3):gmr.15038951.
[10]Karn A,Gillman J D,Flint-Garcia S A. Genetic analysis of teosinte alleles for kernel composition traits in maize[J]. Genes Genomes Genetics,2017,7(4):1157-1164.
[11]Zhang J,Lu X Q,Song X F,et al. Mapping quantitative trait loci for oil,starch,and protein concentrations in grain with high-oil maize by SSR markers[J]. Euphytica,2008,162:335-344.
[12]Lu X,Zhou Z Q,Wang Y H,et al. Genetic basis of maize kernel protein content revealed by high-density bin mapping using recombinant inbred lines[J]. Frontiers in Plant Science,2022,13:1045854.
[13]Hannah L C,Boehlein S K. Starch biosynthesis in maize endosperm[M]//Maize kernel development. Boston:CABI,2017:149-159.
[14]Seung D,Smith A M. Starch granule initiation and morphogenesis-progress in Arabidopsis and cereals[J]. Journal of Experimental Botany,2019,70(3):771-784.
[15]赵丹. 玉米籽粒营养品质性状的QTL分析[D]. 雅安:四川农业大学,2016:35-37.
[16]Lambert R J,Hallauer A R. High-oil corn hybrids[M]//Specialty corns. Boca Raton:CRC Press:123-145.
[17]Chia J M,Song C,Bradbury P J,et al. Maize HapMap2 identifies extant variation from a genome in flux[J]. Nature Genetics,2012,44:803-807.
[18]Bukowski R,Guo X S,Lu Y L,et al. Construction of the third-generation Zea mays haplotype map[J]. Giga Science,2018,7(4):1-12.
[19]Yang X H,Guo Y Q,Yan J B,et al. Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize[J]. Theoretical and Applied Genetics,2010,120(3):665-678.
[20]Fang H,Fu X Y,Wang Y B,et al. Genetic basis of kernel nutritional traits during maize domestication and improvement[J]. The Plant Journal,2020,101(2):278-292.
[21]赵志鑫,崔婷婷,何坤辉,等. 多环境下玉米籽粒品质性状的QTL定位[J]. 农业生物技术学报,2018,26(12):2027-2035.
[22]Yang X H,Ma H L,Zhang P,et al. Characterization of QTL for oil content in maize kernel[J]. Theoretical and Applied Genetics,2012,125(6):1169-1179.
[23]Yang G H,Dong Y B,Li Y L,et al. Verification of QTL for grain starch content and its genetic correlation with oil content using two connected RIL populations in high-oil maize[J]. PLoS One,2013,8(1):e53770.
[24]Wang T T,Wang M,Hu S T,et al. Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population[J]. BMC Plant Biology,2015,15:1-2.
[25]Lin F,Zhou L,He B,et al. QTL mapping for maize starch content and candidate gene prediction combined with co-expression network analysis[J]. Theoretical and Applied Genetics,2019,32:1931-1941.
[26]Wang Y Z,Li J Z,Li Y L,et al. QTL detection for grain oil and starch content and their associations in two connected F2 ∶3 populations in high-oil maize[J]. Euphytica,2010,174:239-252.
[27]Han X H,Zhou B,Xu W. Transcriptome analysis revealed sh2 gene mutation leads reduced zein protein accumulation in maize endosperm[J]. Genetic Resources and Crop Evolution,2023,70(6):1663-1676.
[28]Sethi M,Singh A,Kaur H,et al. Expression profile of protein fractions in the developing kernel of normal,Opaque2 and quality protein maize[J]. Scientific Reports,2021,11:2469.
[29]周昱婕,韩洁楠,王美娟,等. Opaque2基因对糯玉米子粒品质的影响分析[J]. 玉米科学,2021,29(2):29-34.
[30]Li C S,Xiang X L,Huang Y C,et al. Long-read sequencing reveals genomic structural variations that underlie creation of quality protein maize[J]. Nature Communications,2020,11:17.
[31]Segal G,Song R,Messing J. A new opaque variant of maize by a single dominant RNA-interference-inducing transgene[J]. Genetics,2003,165(1):387-397.
[32]Huang Y C,Wang H H,Zhu Y D,et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature,2022,612:292-300.
[33]Hu S T,Wang M,Zhang X,et al. Genetic basis of kernel starch content decoded in a maize multi-parent population[J]. Plant Biotechnology Journal,2021,19(11):2192-2205.
[34]Zheng P Z,Allen W B,Roesler K,et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics,2008,40:367-372.
[35]Shen B,Allen W B,Zheng P Z,et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant Physiology,2010,153(3):980-987.
[36]Zheng Y Y,Yuan F,Huang Y Q,et al. Genome-wide association studies of grain quality traits in maize[J]. Scientific Reports,2021,11:9797.
[37]Ning L H,Wang Y C,Shi X,et al. Nitrogen-dependent binding of the transcription factor PBF1 contributes to the balance of protein and carbohydrate storage in maize endosperm[J]. The Plant Cell,2023,35(1):409-434.
[38]Wang J,Wang H W,Li K,et al. Characterization and transcriptome analysis of maize small-kernel mutant smk7a in different development stages[J]. Plants,2023,12(2):354.
[39]郭晋杰,刘文斯,郑云霄,等. 基于4个测交群体玉米籽粒品质相关性状关联分析[J]. 农业生物技术学报,2019,27(5):809-824.
[40]Myers A M,James M G,Lin Q H,et al. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function[J]. The Plant Cell,2011,23(6):2331-2347.
[41]He Y H,Yang Q,Yang J,et al. Shrunken4 is a mutant allele of ZmYSL2 that affects aleurone development and starch synthesis in maize[J]. Genetics,2021,218(2):iyab070.
[42]Finegan C,Boehlein S K,Leach K A,et al. Genetic perturbation of the starch biosynthesis in maize endosperm reveals sugar-responsive gene networks[J]. Frontiers in Plant Science,2021,12:800326.
[43]Zang J,Huo Y Q,Liu J,et al. Maize YSL2 is required for iron distribution and development in kernels[J]. Journal of Experimental Botany,2020,71(19):5896-5910.
[44]Zhang X,von Mogel K J H,Lor V S,et al. Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism[J]. Proceedings of the National Academy of Sciences of the United states of America,2019,116(41):20776-20785.
[45]Han N,Li W C,Xie C X,et al. The effects of SBEIIb gene mutation on physicochemical properties of starch in maize[J]. Theoretical and Experimental Plant Physiology,2022,34(3):381-393.
[46]Qi X,Li S X,Zhu Y X,et al. ZmDof3,a maize endosperm-specific Dof protein gene,regulates starch accumulation and aleurone development in maize endosperm[J]. Plant Molecular Biology,2017,93(1/2):7-20.
[47]Li P P,Ma H Z,Xiao N,et al. Overexpression of the ZmSUS1 gene alters the content and composition of endosperm starch in maize (Zea mays L.)[J]. Planta,2023,257(5):97.
[48]Zhang W L,Yang W P,Wang M C,et al. Increasing lysine content of waxy maize through introgression of opaque-2 and opaque-16 genes using molecular assisted and biochemical development[J]. PLoS One,2013,8(2):e56227.
[49]Lu D L,Lu W P. Effects of protein removal on the physicochemical properties of waxy maize flours[J]. Starch-Strke,2012,64(11):874-881.
[50]Qi X T,Dong L,Liu C L,et al. Systematic identification of endogenous RNA polymerase Ⅲ promoters for efficient RNA guide-based genome editing technologies in maize[J]. The Crop Journal,2018,6(3):314-320.
[51]Zhao Y J,Li N,Li B,et al. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology[J]. Planta,2015,241(2):449-461.
[52]Guo X M,Ge Z P,Wang M,et al. Genome-wide association study of quality traits and starch pasting properties of maize kernels[J]. BMC Genomics,2023,24(1):59.
[53]Liu N,Xue Y D,Guo Z Y,et al. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels[J]. Frontiers in Plant Science,2016,7:1046.
[54]Hao X M,Li X W,Yang X H,et al. Transferring a major QTL for oil content using marker-assisted backcrossing into an elite hybrid to increase the oil content in maize[J]. Molecular Breeding,2014,34(2):739-748.
[55]Chai Y C,Hao X M,Yang X H,et al. Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize[J]. Molecular Breeding,2012,29(4):939-949.
[56]Yagˇd K,Sozen E. Heritability,variance components and correlations of yield and quality traits in durum wheat (Triticum durum Desf.)[J]. Pakistan Journal of Botany,2009,41(2):753-759.

相似文献/References:

[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
 Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(9):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
 Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(9):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
 Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(9):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
 Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(9):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
 Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(9):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
 Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(9):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
 Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(9):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
 Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(9):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
 Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(9):77.
[11]罗峰,白晓倩,刘海学,等.施肥对玉米籽粒和秸秆产量、粗蛋白含量的影响[J].江苏农业科学,2019,47(24):54.
 Luo Feng,et al.Effects of fertilization on yield and crude protein content of maize grain and straw[J].Jiangsu Agricultural Sciences,2019,47(9):54.
[12]魏良明,曹丽茹,郭书磊,等.玉米3个籽粒性状的遗传研究[J].江苏农业科学,2023,51(17):81.
 Wei Liangming,et al.Genetic study of three grain traits in maize (Zea mays L.)[JY。]Wei Liangming,et al(81)[J].Jiangsu Agricultural Sciences,2023,51(9):81.

备注/Memo

备注/Memo:
收稿日期:2024-03-29
基金项目:湖南省科技创新计划(编号:2023RC3153);长沙市杰出创新青年培养计划(编号:kq2209016);湖南省普通高校青年骨干教师培养项目(编号:202210537001gg)。
作者简介:肖艳梅(1999—),女,湖南邵阳人,硕士研究生,主要从事玉米种质资源创新与利用研究。E-mail:xym66@stu.hunau.edu.cn。
通信作者:黄成,博士,副教授,主要从事大豆和玉米分子遗传育种研究。E-mail:hc66@hunau.edu.cn。
更新日期/Last Update: 2024-05-05