[1]付学鹏,吴凤芝,吴瑕,等. 间套作改善作物矿质营养的机理研究进展[J]. 植物营养与肥料学报,2016,22(2):525-535.
[2]Wang Z G,Jin X,Bao X G,et al. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping[J]. PLoS One,2014,9(12):e113984.
[3]Zhang F S,Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil,2003,248(1):305-312.
[4]Zhang H,Zeng F P,Zou Z G,et al. Nitrogen uptake and transfer in a soybean/maize intercropping system in the Karst region of southwest China[J]. Ecology and Evolution,2017,7(20):8419-8426.
[5]刘均霞. 玉米大豆间作条件下钾素吸收利用研究[J]. 宁夏农林科技,2011,52(6):4-5.
[6]Li L,Zhang F S,Li X L,et al. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean[J]. Nutrient Cycling in Agroecosystems,2003,65(1):61-71.
[7]闫锋,崔秀辉,王成,等. 玉米绿豆间作效应分析[J]. 安徽农业科学,2013,41(27):10931-10932.
[8]Yang S H,Qiu J X,Xu C S,et al. Effects of intercropping patterns on dry matter accumulation and transportation of maize (Zea mays L.) and soybean [Glycine max (L.) Merrill][J]. Agricultural Science & Technology,2013,14(11):1545-1549.
[9]Zuo Y M,Zhang F S,Li X L,et al. Studies on the improvement in iron nutrition of peanut by intercropping with maize on a calcareous soil[J]. Plant and Soil,2000,220(1):13-25.
[10]黄家风,李克梅,王爱英,等. 豆科植物-根瘤菌共生固氮的分子机理[J]. 石河子大学学报(自然科学版),2002,6(1):74-78.
[11]李少明,赵平,范茂攀,等. 玉米大豆间作条件下氮素养分吸收利用研究[J]. 云南农业大学学报,2004,19(50):572-574.
[12]Li C J,Li Y Y,Yu C B,et al. Crop nitrogen use and soil mineral nitrogen accumulation under different crop combinations and patterns of strip intercropping in Northwest China[J]. Plant and Soil,2011,342(1):221-231.
[13]吕越,吴普特,陈小莉,等. 地上部与地下部作用对玉米‖大豆间作优势的影响[J]. 农业机械学报,2014,45(1):129-136,142.
[14]张雷昌,汤利,董艳,等. 根系互作对间作玉米大豆氮和磷吸收利用的影响[J]. 南京农业大学学报,2016,39(4):611-618.
[15]张雷昌,汤利,董艳,等. 根系互作影响玉米大豆间作作物氮吸收[J]. 云南农业大学学报(自然科学),2016,31(6):1111-1119.
[16]周贤玉,唐艺玲,王志国,等. 减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响[J]. 中国生态农业学报,2017,25(8):1139-1146.
[17]汪新月,史静,岳献荣,等. 接种AMF与间作对红壤上玉米和大豆种间氮素竞争的影响[J]. 菌物学报,2017,36(7):972-982.
[18]尹元萍,张雅琼,申毓晗,等. 玉米‖大豆间作中大豆根系生长及氮磷养分吸收的特点[J]. 西南农业学报,2014,27(6):2305-2310.
[19]余常兵,孙建好,李隆. 种间相互作用对作物生长及养分吸收的影响[J]. 植物营养与肥料学报,2009,15(1):1-8.
[20]张晓娜,陈平,杜青,等. 玉米‖大豆、玉米‖花生间作对作物氮素吸收及结瘤固氮的影响[J]. 中国生态农业学报(中英文),2019,27(8):1183-1194.
[21]Meng L B,Zhang A Y,Wang F,et al. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system[J]. Frontiers in Plant Science,2015,6:339.
[22]Zhang X Q,Huang G Q,Bian X M,et al. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize,and the quantity of microorganisms and activity of enzymes in the rhizosphere[J]. Plant and Soil,2013,368(1):407-417.
[23]雍太文,刘小明,刘文钰,等. 减量施氮对玉/大豆套作体系中作物产量及养分吸收利用的影响[J]. 应用生态学报,2014,25(2):474-482.
[24]雍太文,刘小明,刘文钰,等. 减量施氮对玉米/大豆套作系统下作物氮素吸收和利用效率的影响[J]. 生态学报,2015,35(13):4473-4482.
[25]Fu Z D,Zhou L,Chen P,et al. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community[J]. Journal of Integrative Agriculture,2019,18(9):2006-2018.
[26]Chen P,Du Q,Liu X M,et al. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maize-soybean relay strip intercropping system[J]. PLoS One,2017,12(9):e0184503.
[27]焦念元,汪江涛,尹飞,等. 施用乙烯利和磷肥对玉米‖花生间作氮吸收分配及间作优势的影响[J]. 植物营养与肥料学报,2016,22(6):1477-1484.
[28]刘颖,王建国,郭峰,等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报,2020,42(6):994-1001.
[29]焦念元,侯连涛,宁堂原,等. 玉米花生间作氮磷营养间作优势分析[J]. 作物杂志,2007(4):50-53.
[30]李玉英,胡汉升,程序,等. 种间互作和施氮对蚕豆‖玉米间作生态系统地上部和地下部生长的影响[J]. 生态学报,2011,31(6):1617-1630.
[31]叶优良,李隆,孙建好,等. 地下部分隔对蚕豆‖玉米间作氮素吸收和土壤硝态氮残留影响[J]. 水土保持学报,2005,19(3):13-16,53.
[32]Li Y Y,Yu C B,Cheng X,et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean[J]. Plant and Soil,2009,323(1):295-308.
[33]Li L,Yang S C,Li X L,et al. Interspecific complementary and competitive interactions between intercropped maize and faba bean[J]. Plant and Soil,1999,212(2):105-114.
[34]Mei P P,Gui L G,Wang P,et al. Maize/faba bean intercropping with rhizobia inoculation enhances productivity and recovery of fertilizer P in a reclaimed desert soil[J]. Field Crops Research,2012,130:19-27.
[35]Fan F L,Zhang F S,Song Y N,et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems[J]. Plant and Soil,2006,283(1):275-286.
[36]Li Q Z,Sun J H,Wei X J,et al. Overyielding and interspecific interactions mediated by nitrogen fertilization in strip intercropping of maize with faba bean,wheat and barley[J]. Plant and Soil,2011,339(1):147-161.
[37]Li L,Sun J H,Zhang F S,et al. Root distribution and interactions between intercropped species[J]. Oecologia,2006,147(2):280-290.
[38]陈国栋,黄高宝,柴强. 不同带型及施氮条件下玉米间作豌豆的产量表现和氮肥利用率[J]. 中国土壤与肥料,2013(3):78-82.
[39]李娟,王文丽,赵旭,等. 根际分隔对玉米‖豌豆间作种间竞争及豌豆结瘤固氮的影响[J]. 干旱地区农业研究,2016,34(6):177-183.
[40]郭丽琢,张虎天,何亚慧,等. 根瘤菌接种对豌豆‖玉米间作系统作物生长及氮素营养的影响[J]. 草业学报,2012,21(1):43-49.
[41]Hu F L,Zhao C,Feng F X,et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea[J]. Plant and Soil,2017,412(1):235-251.
[42]Zhou L L,Cao J,Zhang F S,et al. Rhizosphere acidification of faba bean,soybean and maize[J]. The Science of the Total Environment,2009,407(14):4356-4362.
[43]Rodriguez C,Carlsson G,Englund J E,et al. Grain legume-cereal intercropping enhances the use of soil-derived and biologically fixed nitrogen in temperate agroecosystems.A meta-analysis[J]. European Journal of Agronomy,2020,118:126077.
[44]Xu Z,Li C J,Zhang C C,et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use. A meta-analysis[J]. Field Crops Research,2020,246:107661.
[45]Gao H X,Meng W W,Zhang C C,et al. Yield and nitrogen uptake of sole and intercropped maize and peanut in response to N fertilizer input[J]. Food and Energy Security,2020,9(1):e187.
[46]王雪蓉,张润芝,李淑敏,等. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟[J]. 中国生态农业学报(中英文),2019,27(9):1354-1363.
[47]付智丹,周丽,陈平,等. 施氮量对玉米/大豆套作系统土壤微生物数量及土壤酶活性的影响[J]. 中国生态农业学报,2017,25(10):1463-1474.
[48]周丽,付智丹,杜青,等. 减量施氮对玉米/大豆套作系统中作物氮素吸收及土壤氨氧化与反硝化细菌多样性的影响[J]. 中国农业科学,2017,50(6):1076-1087.
[49]雍太文,陈平,刘小明,等. 减量施氮对玉米/大豆套作系统土壤氮素氨化、硝化及固氮作用的影响[J]. 作物学报,2018,44(10):1485-1495.
[50]陈虹,文熙宸,曾瑾汐,等. 氮磷配施对玉米/大豆带状套作系统中土壤酶活性及速效养分的影响[J]. 华北农学报,2020,35(2):133-143.
[51]曾瑾汐,文熙宸,Raza M A,等. 氮磷配施对玉米-大豆套作模式下种间作用、玉米产量及干物质积累与转运的影响[J]. 草业学报,2017,26(7):166-176.
[52]Wang G H,Sheng L C,Zhao D,et al. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J]. Frontiers in Plant Science,2016,7:1901.
[53]房增国,赵秀芬,孙建好,等. 接种根瘤菌对蚕豆/玉米间作系统氮营养的影响[J]. 华北农学报,2009,24(4):124-128.
[54]原小燕,李根泽,林安松,等. 间作模式及氮、磷肥对玉米/花生间作体系产量和经济效益的影响[J]. 花生学报,2015,44(4):13-20.
[55]尤丹. 玉米花生间作对花生生长的影响[J]. 园艺与种苗,2020,40(11):38-40.
[56]Zhao C,Fan Z L,Coulter J A,et al. High maize density alleviates the inhibitory effect of soil nitrogen on intercropped pea[J]. Agronomy,2020,10(2):248.
[57]Fan Z L,Zhao Y H,Chai Q,et al. Synchrony of nitrogen supply and crop demand are driven via high maize density in maize/pea strip intercropping[J]. Scientific Reports,2019,9:10954.
[58]Tan Y,Hu F L,Chai Q,et al. Expanding row ratio with lowered nitrogen fertilization improves system productivity of maize/pea strip intercropping[J]. European Journal of Agronomy,2020,113:125986.
[59]Shao Z Q,Wang X Y,Gao Q,et al. Root contact between maize and alfalfa facilitates nitrogen transfer and uptake using techniques of foliar 15N-labeling[J]. Agronomy,2020,10(3):360.
[60]Ren Y Y,Wang X L,Zhang S Q,et al. Influence of spatial arrangement in maize-soybean intercropping on root growth and water use efficiency[J]. Plant and Soil,2017,415(1):131-144.
[61]唐劲驰,Mboreha I A,佘丽娜,等. 大豆根构型在玉米/大豆间作系统中的营养作用[J]. 中国农业科学,2005,38(6):1196-1203.
[62]Zhang H L,Wang X Y,Gao Y Z,et al. Short-term N transfer from alfalfa to maize is dependent more on arbuscular mycorrhizal fungi than root exudates in N deficient soil[J]. Plant and Soil,2020,446(1):23-41.
[63]Wang X Y,Gao Y Z,Zhang H L,et al. Enhancement of rhizosphere citric acid and decrease of NO-3/NH+4ratio by root interactions facilitate N fixation and transfer[J]. Plant and Soil,2020,447(1):169-182.
[64]Li B,Li Y Y,Wu H M,et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America,2016,113(23):6496-6501.
[65]Song Y N,Zhang F S,Marschner P,et al. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.),maize (Zea mays L.),and faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils,2007,43(5):565-574.
[66]Tian X L,Wang C B,Bao X G,et al. Crop diversity facilitates soil aggregation in relation to soil microbial community composition driven by intercropping[J]. Plant and Soil,2019,436(1):173-192.
[67]Li Q S,Chen J,Wu L K,et al. Belowground interactions impact the soil bacterial community,soil fertility,and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences,2018,19(2):622.
[68]Li Q S,Wu L K,Chen J,et al. Biochemical and microbial properties of rhizospheres under maize/peanut intercropping[J]. Journal of Integrative Agriculture,2016,15(1):101-110.
[69]Song Y N,Marschner P,Li L,et al. Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.),maize (Zea mays L.),and faba bean (Vicia faba L.)[J]. Biology and Fertility of Soils,2007,44(2):307-314.
[70]Chen J,Arafat Y,Wu L,et al. Shifts in soil microbial community,soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels[J]. Applied Soil Ecology,2018,124:327-334.
[1]孙建伟.水涝胁迫对玉米细胞保护酶同工酶的影响[J].江苏农业科学,2013,41(04):85.
[2]刘荣,张卫建,齐华,等.密植型玉米“中单909”高产群体结构特征[J].江苏农业科学,2013,41(05):56.
Liu Rong,et al.Study on high yield population structure of close planting maize cultivar “Zhongdan 909”[J].Jiangsu Agricultural Sciences,2013,41(10):56.
[3]沈浜凯,肖龙云,冯乃杰,等.黄腐酸和AM真菌对玉米幼苗抗旱性的影响[J].江苏农业科学,2013,41(05):64.
Shen Bangkai,et al.Effects of fulvic acid and AM fungi on drought resistance of maize seedlings[J].Jiangsu Agricultural Sciences,2013,41(10):64.
[4]张金然,缑艳霞,孙丽鹏.固氮螺菌157对玉米、向日葵的促生长作用[J].江苏农业科学,2014,42(12):116.
Zhang Jinran,et al.Effects of Azospirillum 157 on growth of maize and sunflower[J].Jiangsu Agricultural Sciences,2014,42(10):116.
[5]白小军,吴燕,牛艳,等.玉米中乙草胺和莠去津残留量GC-MS/MS分析法的建立[J].江苏农业科学,2014,42(11):334.
Bai Xiaojun,et al().Establishment of GC-MS/MS analysis method of acetochlor and atrazine residues in maize[J].Jiangsu Agricultural Sciences,2014,42(10):334.
[6]邹晓威,王娜,刘芬,等.玉米抗病相关基因在玉米与玉米丝黑穗病菌、玉米黑粉病菌互作过程中的表达差异分析[J].江苏农业科学,2014,42(11):150.
Zou Xiaowei,et al(0).Different expression of resistance-related genes between Sporisorium reilianum and Ustilago maydis interact with corn[J].Jiangsu Agricultural Sciences,2014,42(10):150.
[7]杨洪兴,陈静,陈艳萍.江苏省玉米机械化生产的发展及育种对策思考[J].江苏农业科学,2014,42(11):116.
Yang Hongxing,et al().Development and breeding strategy of mechanized production of maize in Jiangsu Province[J].Jiangsu Agricultural Sciences,2014,42(10):116.
[8]张丽妍,霍剑锋,孟繁盛,等.不同肥料、施肥水平及施用方法对玉米产量、性状及效益的影响[J].江苏农业科学,2014,42(11):119.
Zhang Liyan,et al (9).Effects of different fertilizers,fertilizer levels and fertilizing methods on yield,characters and benefit of maize[J].Jiangsu Agricultural Sciences,2014,42(10):119.
[9]王雷,崔震海,张立军.玉米C4型PEPC全长基因的克隆与表达载体构建[J].江苏农业科学,2014,42(11):26.
Wang Lei,et al().Cloning and expression vector construction of full-length C4 type PEPC gene in maize[J].Jiangsu Agricultural Sciences,2014,42(10):26.
[10]雷恩,赵光明,刘艳红.不同稀释浓度松土保水剂对玉米营养生长的影响[J].江苏农业科学,2013,41(06):77.
Lei En,et al.Effect of different dilutions of super absorbent polymer on vegetative growth of maize[J].Jiangsu Agricultural Sciences,2013,41(10):77.