|本期目录/Table of Contents|

[1]孔令娟,黄钰淇,孙胜,等.冠菌素提高番茄对番茄黄化曲叶病毒抗性的分析[J].江苏农业科学,2024,52(11):116-122.
 Kong Lingjuan,et al.Analysis of coronatine improving tomato resistance to tomato yellow leaf curl virus[J].Jiangsu Agricultural Sciences,2024,52(11):116-122.
点击复制

冠菌素提高番茄对番茄黄化曲叶病毒抗性的分析(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第11期
页码:
116-122
栏目:
植物保护
出版日期:
2024-06-05

文章信息/Info

Title:
Analysis of coronatine improving tomato resistance to tomato yellow leaf curl virus
作者:
孔令娟1黄钰淇2孙胜3王鹏23耿雪青2
1.上海市农业技术推广服务中心,上海 201103; 2.上海交通大学农业与生物学院,上海 200240;
3.山西农业大学园艺学院,山西晋中 030801
Author(s):
Kong Lingjuanet al
关键词:
冠菌素番茄番茄黄化曲叶病毒基因表达抗性反应
Keywords:
-
分类号:
S436.412.1+1
DOI:
-
文献标志码:
A
摘要:
番茄黄化曲叶病毒(TYLCV)在生产上是一种毁灭性病害,而目前针对该病害尚无有效的防治措施。冠菌素可在植物抗逆反应中发挥一定作用,然而冠菌素提高番茄对TYLCV抗性的研究还鲜有报道。为探究冠菌素提高番茄抗番茄黄化曲叶病的机制,以番茄感病品种浦粉一号为试验材料,在盆栽试验中,通过qPCR的方法来检测叶片中TYLCV病毒含量,分别采用氮蓝四唑还原法、愈创木酚比色法和紫外吸收法测定超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性,通过实时荧光定量PCR测定抗性相关基因表达量。在田间试验中,利用卷尺、游标卡尺等测定番茄植株叶片数、茎粗、开展度,并统计病情指数和植株发病率。结果表明,冠菌素处理显著降低TYLCV含量约83.5%(P<0.000 1),显著增加了POD、SOD的活性(P<0.0001、P<0.05),上调编码叶绿素a/b结合蛋白基因Cab-1A和Cab-1D,诱导番茄抗病信号通路上FLS2和PR-1a1上调表达。田间试验结果表明,冠菌素处理降低了植株平均病情指数和发病率,并显著增加了番茄植株的开展度(P<0.000 1)。综上所述,冠菌素可以降低番茄植株叶片中TYLCV含量,影响番茄抗氧化酶活性并增加抗性相关基因的表达量。研究结果可为冠菌素在番茄抗TYLCV过程中的应用提供理论依据。
Abstract:
-

参考文献/References:

[1]孙胜,亢秀萍,邢国明,等. 番茄黄化曲叶病毒病研究进展[J]. 东北农业大学学报,2015,46(5):102-108.
[2]Prasad A,Sharma N,Hari-Gowthem G,et al. Tomato yellow leaf curl virus:impact,challenges,and management[J]. Trends in Plant Science,2020,25(9):897-911.
[3]Katsir L,Schilmiller A L,Staswick P E,et al. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(19):7100-7105.
[4]Zheng X Y,Spivey N W,Zeng W Q,et al. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host & Microbe,2012,11(6):587-596.
[5]Uddin S,Bae D,Cha J Y,et al. Coronatine induces stomatal reopening by inhibiting hormone signaling pathways[J]. Journal of Plant Biology,2022,65(5):403-411.
[6]Zhou Y Y,Zhang M C,Li J M,et al. Phytotoxin coronatine enhances heat tolerance via maintaining photosynthetic performance in wheat based on electrophoresis and TOF-MS analysis[J]. Scientific Reports,2015,5:13870.
[7]Guo Y L,Huang G M,Guo Q,et al. Increase in root density induced by coronatine improves maize drought resistance in North China[J]. The Crop Journal,2023,11(1):278-290.
[8]李进,翟梦华,于春欣,等. 冠菌素对低温胁迫下棉花幼苗AsA-GSH循环的调控效应研究[J]. 棉花学报,2020,32(5):381-391.
[9]李世玉,程登虎,闫星,等. 外源SNP对盐胁迫下甜瓜幼苗生长及抗氧化酶活性的影响[J]. 西北植物学报,2022,42(6):994-1002.
[10]李甜. 番茄与番茄黄化曲叶病毒的互作机理研究[D]. 太谷:山西农业大学,2021:20-25.
[11]Pozo M J,van der Ent S,van Loon L C,et al. Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria-induced systemic resistance in Arabidopsis thaliana[J]. New Phytologist,2008,180(2):511-523.
[12]Zhang N,Pombo M A,Rosli H G,et al. Tomato wall-associated kinase SlWak1 depends on Fls2/Fls3 to promote apoplastic immune responses to Pseudomonas syringae[J]. Plant Physiology,2020,183(4):1869-1882.
[13]Chen N,Shao Q,Lu Q N,et al. Transcriptome analysis reveals differential transcription in tomato (Solanum lycopersicum) following inoculation with Ralstonia solanacearum[J]. Scientific Reports,2022,12:22137.
[14]Chun S C,Chandrasekaran M. Chitosan and chitosan nanoparticles induced expression of pathogenesis-related proteins genes enhances biotic stress tolerance in tomato[J]. International Journal of Biological Macromolecules,2019,125:948-954.
[15]Farouk S,Al-Amri S M.Exogenous zinc forms counteract NaCl-induced damage by regulating the antioxidant system,osmotic adjustment substances,and ions in canola (Brassica napus L. cv. Pactol) plants[J]. Journal of Soil Science and Plant Nutrition,2019,19(4):887-899.
[16]Li Y Z,Qin L,Zhao J J,et al. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum)[J]. PLoS One,2017,12(2):e0172466.
[17]Seo J K,Kim M K,Kwak H R,et al. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis[J]. Virology,2018,516:1-20.
[18]Zhang Z C,He B,Sun S,et al. The phytotoxin COR induces transcriptional reprogramming of photosynthetic,hormonal and defence networks in tomato[J]. Plant Biology,2021,23:69-79.
[19]Liu R,Xu Y H,Jiang S C,et al. Light-harvesting chlorophyll a/b-binding proteins,positively involved in abscisic acid signalling,require a transcription repressor,WRKY40,to balance their function[J]. Journal of Experimental Botany,2013,64(18):5443-5456.
[20]Staneloni R J,Rodriguez-Batiller M J,Casal J J. Abscisic acid,high-light,and oxidative stress down-regulate a photosynthetic gene via a promoter motif not involved in phytochrome-mediated transcriptional regulation[J]. Molecular Plant,2008,1(1):75-83.
[21]Majhi B B,Sobol G,Gachie S,et al. Brassinosteroid-signalling kinases 7 and 8 associate with the FLS2 immune receptor and are required for flg22-induced PTI responses[J]. Molecular Plant Pathology,2021,22(7):786-799.
[22]Tornero P,Gadea J,Conejero V,et al. Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development[J]. Molecular Plant(Microbe Interactions),1997,10(5):624-634.
[23]Xu P,Blancaflor E B,Roossinck M J. In spite of induced multiple defense responses,tomato plants infected with cucumber mosaic virus and D satellite RNA succumb to systemic necrosis[J]. Molecular Plant(Microbe Interactions),2003,16(6):467-476.

相似文献/References:

[1]何从亮,毛久庚,甘小虎,等.玻璃温室番茄长季节基质袋栽培技术[J].江苏农业科学,2013,41(04):158.
[2]李永灿,余文贵,陈怀谷,等.番茄灰霉病菌产毒条件优化[J].江苏农业科学,2013,41(05):94.
 Li Yongcan,et al.Optimization of toxigenic conditions of tomato Botrytis cinerea[J].Jiangsu Agricultural Sciences,2013,41(11):94.
[3]赵秋月,甘潇,张广臣.Na2CO3胁迫对番茄幼苗生长的影响[J].江苏农业科学,2013,41(05):128.
 Zhao Qiuyue,et al.Effect of Na2CO3 stress on growth of tomato seedlings[J].Jiangsu Agricultural Sciences,2013,41(11):128.
[4]耿德刚,徐俊伟,戈振超,等.温室大棚番茄滴灌试验研究及效益分析[J].江苏农业科学,2013,41(05):132.
 Geng Degang,et al.Drip irrigation experimental and benefit analysis on greenhouse tomato[J].Jiangsu Agricultural Sciences,2013,41(11):132.
[5]杜中平,聂书明.不同配方基质对番茄生长特性、光合特性及产量的影响[J].江苏农业科学,2013,41(05):138.
 Du Zhongping,et al.Effects of different substrates on growth,photosynthetic characteristics and yield of tomato[J].Jiangsu Agricultural Sciences,2013,41(11):138.
[6]赵河,毛秀杰,叶景学.抗叶霉病不同基因型番茄的光合特性[J].江苏农业科学,2014,42(11):185.
 Zhao He,et al(8).Photosynthetic characteristics of different genotypes of tomato with resistance to leaf mold[J].Jiangsu Agricultural Sciences,2014,42(11):185.
[7]陈素娟,孙娜娜.不同基质配比对番茄秧苗生长的影响[J].江苏农业科学,2013,41(06):128.
 Chen Sujuan,et al.Effect of different substrate compositions on growth of tomato seedling[J].Jiangsu Agricultural Sciences,2013,41(11):128.
[8]孙禛禛,吴秋霞,温新宇,等.转反义LetAPX基因番茄抗氧化酶活性在苗期、花期、果期的变化[J].江苏农业科学,2015,43(12):188.
 Sun Zhenzhen,et al.Study on antioxidant enzymes activity during seedling,flowering and fruiting of tomato with antisense LetAPX gene[J].Jiangsu Agricultural Sciences,2015,43(11):188.
[9]李晓慧,张恩让,何玉安,等.亚高温及外源物质调节下番茄的生理响应[J].江苏农业科学,2013,41(07):135.
 Li Xiaohui,et al.Physiological response of tomato under the regulation of sub-high temperature and exogenous substances[J].Jiangsu Agricultural Sciences,2013,41(11):135.
[10]李建宏,张楠,张泽,等.番茄红素提取与测定方法的优化[J].江苏农业科学,2013,41(08):259.
 Li Jianhong,et al.Optimization of lycopene extraction and determination method[J].Jiangsu Agricultural Sciences,2013,41(11):259.

备注/Memo

备注/Memo:
收稿日期:2023-07-04
基金项目:上海市科技兴农技术创新项目(编号:2021-02-08-00-12-F00799);上海市科委一带一路国际交流合作项目(编号:19390743400)。
作者简介:孔令娟(1977—),女,山西汾阳人,硕士,高级农艺师,主要从事蔬菜新品种、新技术的示范与推广。E-mail:31459841@qq.com。
通信作者:王鹏,硕士研究生,主要从事设施蔬菜栽培生理学研究,E-mail:2283383845@qq.com;耿雪青,博士,副研究员,主要从事番茄与不同病原物互作机制以及番茄逆境激素信号途径研究,E-mail:xqgeng@sjtu.edu.cn。
更新日期/Last Update: 2024-06-05