|本期目录/Table of Contents|

[1]黄贻望,王国帅,毛志,等.KMeans++与注意力机制融合的苹果叶片病害识别方法[J].江苏农业科学,2024,52(20):190-198.
 Huang Yiwang,et al.Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms[J].Jiangsu Agricultural Sciences,2024,52(20):190-198.
点击复制

KMeans++与注意力机制融合的苹果叶片病害识别方法(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第20期
页码:
190-198
栏目:
病虫害智能检测
出版日期:
2024-10-20

文章信息/Info

Title:
Identification of apple leaf diseases in complex environments through integration of KMeans++ and attention mechanisms
作者:
黄贻望123 王国帅1 毛志12 刘声1
1.铜仁学院大数据学院/经济管理学院,贵州铜仁 554300; 2.民族教育信息化教育部重点实验/云南师范大学,云南昆明 650000;3.铜仁学院乡村振兴研究中心,贵州铜仁 554300
Author(s):
Huang Yiwanget al
关键词:
苹果叶片病害病害检测注意力机制ConvNeXtBlock卷积块注意力模块(CBAM)CA
Keywords:
-
分类号:
S126;TP391.41
DOI:
-
文献标志码:
A
摘要:
为解决复杂环境下小尺度苹果叶片病害识别精度不高、鲁棒性不强的问题,在YOLO v5s的基础上提出一种新的改进方法。该方法首先在模型训练之前使用KMeans++聚类算法生成更接近真实框的锚框;其次在骨干网络中加入卷积块注意几模块(convolutional block attention module,CBAM),来提升复杂环境下小目标特征的提取能力;再次为了增强颈部网络对不同大小病害多尺度特征的有效识别,选择ConvNeXtBlock模块替换C3(CSP bottleneck with 3 convolutions)模块,并在颈部网络中融入坐标注意力模块(coordinate attention,CA),来加强模型对关键空间位置的响应,使得不同尺度的特征都能被更有效地利用;最后使用ECIoU损失函数替换原始的CIoU损失函数,来提高模型的收敛速度和精度。与Faster R-CNN、SSD、YOLO v5s、YOLO v7、YOLO v8目标检测模型相比,改进后模型的平均精度均值(mean average precision,mAP0.5)值分别提升0.6、4.6、6.3、1.7、1.3百分点,同时在强光照、模糊、暗光的复杂场景下具有较强的鲁棒性。该模型可以为复杂环境下苹果叶片病害的识别提供行之有效的方案。
Abstract:
-

参考文献/References:

[1]王壹. 中国苹果产量稳居世界第一[N]. 农民日报,2023-11-18(7).
[2]Zhang Y K,Huang S J,Zhou G X,et al. Identification of tomato leaf diseases based on multi-channel automatic orientation recurrent attention network[J]. Computers and Electronics in Agriculture,2023,205:107605.
[3]Gadekallu T R,Rajput D S,Reddy M P K,et al. A novel PCA–whale optimization-based deep neural network model for classification of tomato plant diseases using GPU[J]. Journal of Real-Time Image Processing,2021,18(4):1383-1396.
[4]Zhang D Y,Huang Y,Wu C,et al. Detecting tomato disease types and degrees using multi-branch and destruction learning[J]. Computers and Electronics in Agriculture,2023,213:108244.
[5]鲍文霞,黄雪峰,胡根生,等. 基于改进卷积神经网络模型的玉米叶部病害识别[J]. 农业工程学报,2021,37(6):160-167.
[6]Zeng W H,Li H D,Hu G S,et al. Lightweight dense-scale network (LDSNet) for corn leaf disease identification[J]. Computers and Electronics in Agriculture,2022,197:106943.
[7]Qian X F,Zhang C Q,Chen L,et al. Deep learning-based identification of maize leaf diseases is improved by an attention mechanism:self-attention[J]. Frontiers in Plant Science,2022,13:864486.
[8]毛锐,张宇晨,王泽玺,等. 利用改进Faster-RCNN识别小麦条锈病和黄矮病[J]. 农业工程学报,2022,38(17):176-185.
[9]马超伟,张浩,马新明,等. 基于改进YOLO v8的轻量化小麦病害检测方法[J]. 农业工程学报,2024,40(5):187-195.
[10]李伟豪,詹炜,周婉,等. 轻量型Yolov7-TSA网络在茶叶病害检测识别中的研究与应用[J]. 河南农业科学,2023,52(5):162-169.
[11]曾晏林,贺壹婷,蔺瑶,等. 基于BCE-YOLO v5的苹果叶部病害检测方法[J]. 江苏农业科学,2023,51(15):155-163.
[12]Mathew M P,Yamuna Mahesh T. Determining the region of apple leaf affected by disease using YOLO v3[C]//2021 International Conference on Communication,Control and Information Sciences. Idukki:IEEE,2021:1-4.
[13]Liu B,Zhang Y,He D J,et al. Identification of apple leaf diseases based on deep convolutional neural networks[J]. Symmetry,2017,10(1):11.
[14]Wang Y W,Wang Y J,Zhao J B. MGA-YOLO:a lightweight one-stage network for apple leaf disease detection[J]. Frontiers in Plant Science,2022,13:927424.
[15]赵嘉威,田光兆,邱畅,等. 基于改进YOLO v4算法的苹果叶片病害检测方法[J]. 江苏农业科学,2023,51(9):193-199.
[16]黄炜,王娟娟,殷学丽. 基于特征分离的小样本苹果病害叶片检测[J]. 江苏农业科学,2023,51(23):195-202.
[17]李鑫然,李书琴,刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程,2021,47(11):298-304.
[18]公徐路,张淑娟. 基于改进YOLO v5s的苹果叶片小目标病害轻量化检测方法[J]. 农业工程学报,2023,39(19):175-184.
[19]孙长兰,林海峰. 一种基于集成学习的苹果叶片病害检测方法[J]. 江苏农业科学,2022,50(20):41-47.
[20]王瑞鹏,陈锋军,朱学岩,等. 采用改进的EfficientNet识别苹果叶片病害[J]. 农业工程学报,2023,39(18):201-210.
[21]李红光,于若男,丁文锐. 基于深度学习的小目标检测研究进展[J]. 航空学报,2021,42(7):100-118.
[22]龙阳,肖小玲. 基于多注意力机制的苹果叶部病害检测方法[J]. 江苏农业科学,2023,51(23):178-186.
[23]Yang Q,Duan S K,Wang L D. Efficient identification of apple leaf diseases in the wild using convolutional neural networks[J]. Agronomy,2022,12(11):2784.
[24]Hughes D P,Salathe M. An open access repository of images on plant health to enable the development of mobile disease diagnostics throung machine learning and crowdsourcing[EB/OL]. (2016-04-12)[2023-06-10]. https://arxiv.org/abs/1511.08060.
[25]Feng J Z,Chao X F. Apple tree leaf disease segmentation dataset[DS/OL]. (2022-03-31) [2023-06-10]. https://www.scidb.cn/en/detail?dataSetId=0e1f 57004db842f99668d82183afd578.
[26]Thapa R,Zhang K,Snavely N,et al. The Plant Pathology Challenge 2020 data set to classify foliar disease of apples[J]. Applications in Plant Sciences,2020,8(9):e11390.
[27]Chen X L,Fang H,Lin T Y,et al. Microsoft coco captions:data collection and evaluation server[J/OL]. [2024-03-15]. https://arxiv.org/abs/1504.00325.
[28]Loureiro C,Filipe V,Gonalves L. Attention mechanism for classification of melanomas[C]//International Conference on Optimization,Learning Algorithms and Applications,2022:65-77.
[29]Li X,Zhong Z S,Wu J L,et al. Expectation-Maximization Attention Networks for Semantic Segmentation[C]//International Conference on Computer Vision,2019.
[30]Guo M H,Liu,Z N,Mu T J,et al. Beyond self-attention:external attention using two linear layers for visual tasks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. 2021:5436-5447.
[31]Hou Q,Zhou D,Feng J.Coordinate Attention for Efficient Mobile Network Design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:13708-13717.
[32]Woo S,Park J,Lee J Y,et al. CBAM:convolutional block attentionmodule[C]//European Conference on Computer Vision. Cham:Springer,2018:3-19.
[33]Liu Z,Mao H Z,Wu C Y,et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and PatternRecognition. New Orleans,2022:11966-11976.
[34]Zhang Y F,Zhang Z,Jia Z,et al. Focal and efficient IoU loss for accurate bounding box regression[J]. Neurocomputing,2022,506(28):146-157.
[35]曹超,顾幸生. 基于改进YOLO v8的行李追踪技术[J]. 计算机工程与应用,2024,60(9):151-158.

相似文献/References:

[1]贾永华,李晓龙,牛锐敏,等.叶面喷锌对苹果叶片生长及产量品质的影响[J].江苏农业科学,2014,42(12):218.
 Jia Yonghua,et al.Effects of spraying zinc on leaves on leaf growth , yield and quality of apple[J].Jiangsu Agricultural Sciences,2014,42(20):218.
[2]里程辉,刘志,王宏,等.不同化学疏花剂对岳帅苹果疏花疏果及果实品质的影响[J].江苏农业科学,2014,42(11):180.
 Li Chenghui,et al(80).Effects of different chemical flower thinners on flower thinning and fruit quality of apple “Yueshuai”[J].Jiangsu Agricultural Sciences,2014,42(20):180.
[3]王贵平,王金政.苹果抗逆性研究进展与鉴定方法[J].江苏农业科学,2013,41(07):151.
 Wang Guiping,et al.Research progress and identification method of stress resistance of apple trees[J].Jiangsu Agricultural Sciences,2013,41(20):151.
[4]李敏,厉恩茂,李壮,等.氨基酸钙叶面微肥对苹果缺素症的矫正及果实品质的影响[J].江苏农业科学,2013,41(11):180.
 Li Min,et al.Effects of calcium amino acid foliar fertilizer on apple element deficiency disease and fruit quality[J].Jiangsu Agricultural Sciences,2013,41(20):180.
[5]王贵平,王金政,薛晓敏,等.晚秋叶施高浓度尿素对苹果落叶及贮藏氮素的影响[J].江苏农业科学,2014,42(01):140.
 Wang Guiping,et al.Effects of high concentrations of foliar applied urea on defoliation and nitrogen storage of apple in late autumn[J].Jiangsu Agricultural Sciences,2014,42(20):140.
[6]宋哲,王宏,于年文,等.间伐、控冠处理对乔化凉香苹果树光合速率和果实产质量的影响[J].江苏农业科学,2016,44(05):290.
 Song Zhe,et al.Effects of thinning and crown control on photosynthesis and fruit yield and quality of Liangxiang apple trees[J].Jiangsu Agricultural Sciences,2016,44(20):290.
[7]黄金凤,王冬梅,闫忠业,等.苹果遗传图谱的构建与QTL定位研究进展[J].江苏农业科学,2016,44(02):4.
 Huang Jinfeng,et al.Construction of genetic map of apple and research progress of QTL localization[J].Jiangsu Agricultural Sciences,2016,44(20):4.
[8]苏律,宋俊霞,胡同乐,等.铁肥不同施用方式对苹果缺铁黄化病的矫正效果[J].江苏农业科学,2016,44(01):188.
 Su Lü,et al.Corrective effect of iron fertilizer with different fertilization methods on iron chlorosis of apple tree[J].Jiangsu Agricultural Sciences,2016,44(20):188.
[9]李静,宋飞虎,浦宏杰,等.苹果控制排湿压力微波干燥模型研究[J].江苏农业科学,2015,43(11):529.
 Li Jing,et al.Study on mathematical modeling of apple microwave drying under different moisture pressures[J].Jiangsu Agricultural Sciences,2015,43(20):529.
[10]廖春丽,王衡,李亚平,等.L-半胱氨酸及金属离子对马铃薯、苹果、甘薯多酚氧化酶活性的影响[J].江苏农业科学,2015,43(11):375.
 Liao Chunli,et al.Effects of L-cysteine and metal ions on activity of polyphenol oxidase from potato,apple and sweet potato[J].Jiangsu Agricultural Sciences,2015,43(20):375.
[11]曾晏林,贺壹婷,蔺瑶,等.基于BCE-YOLOv5的苹果叶部病害检测方法[J].江苏农业科学,2023,51(15):155.
 Zeng Yanlin,et al.An apple leaf disease detection method based on BCE-YOLOv5[J].Jiangsu Agricultural Sciences,2023,51(20):155.
[12]王浩宇,崔艳荣.基于改进ShuffleNet v2模型的苹果叶片病害识别方法[J].江苏农业科学,2024,52(13):214.
 Wang Haoyu,et al.Apple leaf disease identification method based on improved ShuffleNet v2 model[J].Jiangsu Agricultural Sciences,2024,52(20):214.

备注/Memo

备注/Memo:
收稿日期:2024-07-12
基金项目:国家自然科学基金(编号:62066040);民族教育信息化教育部重点实验室开放课题(编号:EIN2024B003);智能计算与信息处理教育部重点实验室开放课题(编号:2023ICIP05);国家留学基金委西部地区人才培养特别项目(编号:202108525007);铜仁市大数据智能计算与应用重点实验室项目(编号:铜仁市科研[2022]5号);贵州省科技基础研究计划(编号:[2022]557)。
作者简介:黄贻望(1978—),男,湖南溆浦人,博士,教授,硕士生导师,主要从事人工智能、服务计算、软件形式化方法等研究。E-mail:yjsyhyw@gztrc.edu.cn。
更新日期/Last Update: 2024-10-20