|本期目录/Table of Contents|

[1]李帅,薄敬东,龚瑞昆,等.基于多尺度特征增强的轻量化黄瓜病害识别模型[J].江苏农业科学,2024,52(20):267-276.
 Li Shuai,et al.A lightweight cucumber disease recognition model based on multiscale feature enhancement[J].Jiangsu Agricultural Sciences,2024,52(20):267-276.
点击复制

基于多尺度特征增强的轻量化黄瓜病害识别模型(PDF)
分享到:

《江苏农业科学》[ISSN:1002-1302/CN:32-1214/S]

卷:
第52卷
期数:
2024年第20期
页码:
267-276
栏目:
病虫害智能检测
出版日期:
2024-10-20

文章信息/Info

Title:
A lightweight cucumber disease recognition model based on multiscale feature enhancement
作者:
李帅 薄敬东 龚瑞昆 崔传金
华北理工大学电气工程学院,河北唐山 063210
Author(s):
Li Shuaiet al
关键词:
黄瓜病害图像识别卷积神经网络轻量化多尺度特征增强空域抑制
Keywords:
-
分类号:
S126;S436.421.1;TP391.41
DOI:
-
文献标志码:
A
摘要:
在复杂的背景环境下对农作物病害进行准确识别与分类,为农作物病害的诊断及防治提供可靠依据,具有重要经济意义。提出了一种新的网络模型——MeNet(multiscale enhance on me),用于对大田中黄瓜的8种形态(其中包含6种病害和鲜黄瓜、鲜叶)进行精准识别。该模型的设计包括适用于网络前端的特征增强模块,对原始图像进行像素级多尺度特征增强,从而提升模型的特征表达效率;运用特征挑选的思想进行后续的特征提取和增强,再加入基于空域抑制的SimAM注意力,进一步突出了显著特征,提高特征效用;运用逐点卷积对特征图进行通道间信息交互,再以全局平均池化总结特征图。结果表明,相较于其他模型,本研究的MeNet性能更为优越,在复杂背景病害数据集上,平均准确率达到92.38%,最高准确率达到了92.92%,而模型的参数量仅为0.33 M,浮点运算量仅为 0.30 G,证明MeNet模型在图像识别领域具有实际应用的潜力和继续研究的价值。
Abstract:
-

参考文献/References:

[1]陈学新,杜永均,黄健华,等. 我国作物病虫害生物防治研究与应用最新进展[J]. 植物保护,2023,49(5):340-370.
[2]Li Z W,Liu F,Yang W J,et al. A survey of convolutional neural networks:analysis,applications,and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):6999-7019.
[3]刘阳,高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报,2021,37(2):187-195.
[4]孙俊,朱伟栋,罗元秋,等. 基于改进MobileNet v2的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[5]彭红星,徐慧明,刘华鼐. 融合双分支特征和注意力机制的葡萄病虫害识别模型[J]. 农业工程学报,2022,38(10):156-165.
[6]贾璐,叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J]. 农业机械学报,2023,54(7):223-233.
[7]王焕鑫,沈志豪,刘泉,等. 基于改进MobileNet v2模型的农作物叶片病害识别研究[J]. 河南农业科学,2023,52(4):143-151.
[8]朱学岩,陈锋军,郑一力,等. 融合双线性网络和注意力机制的油橄榄品种识别[J]. 农业工程学报,2023,39(10):183-192.
[9]杜海顺,张春海,安文昊,等. 基于多层信息融合和显著性特征增强的农作物病害识别[J]. 农业机械学报,2023,54(7):214-222.
[10]李建威,吕晓琪,谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法[J]. 计算机工程,2023,49(10):239-246,254.
[11]Chen Z Y,Wu R H,Lin Y Y,et al. Plant disease recognition model based on improved YOLO v5[J]. Agronomy,2022,12(2):365.
[12]王军,冯孙铖,程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程,2021,47(8):1-13.
[13]吴建成,郭荣佐,成嘉伟,等. 注意力特征融合的快速遥感图像目标检测算法[J]. 计算机工程与应用,2024,60(1):207-216.
[14]Ioffe S,Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning,ICML 2015,2015,1:448-456.
[15]齐国红,许新华,师晓丽. 基于多尺度注意力U-Net的结球甘蓝青虫检测方法[J]. 江苏农业学报,2023,39(6):1349-1357.
[16]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle,WA,USA.IEEE,2020:11531-11539.
[17]Yang L,Zhang R Y,Li L,et al. Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. Virtual:IEEE,2021:11863-11874.
[18]Sandler M,Howard A,Zhu M L,et al. MobileNet v2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT.IEEE,2018:4510-4520.
[19]Tan M X,Le Q V. EfficientNet:rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28)[2023-11-09]. http://arxiv.org/abs/1905.11946.
[20]Han K,Wang Y H,Tian Q,et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle,WA,USA.IEEE,2020:1577-1586.
[21]Liu Z,Mao H Z,Wu C Y,et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,LA,USA.IEEE,2022:11966-11976.

相似文献/References:

[1]张飞云.基于提升小波和学习向量量化神经网络的小麦病害图像识别[J].江苏农业科学,2013,41(05):103.
 Zhang Feiyun.Wheat diseases image recognition based on lifting wavelet and learning vector quantization neural network[J].Jiangsu Agricultural Sciences,2013,41(20):103.
[2]周洪刚,康敏.基于机器视觉的成熟柑橘自动识别研究[J].江苏农业科学,2013,41(06):380.
 Zhou Honggang,et al.Research on automatic recognizing of mature oranges based on machine vision[J].Jiangsu Agricultural Sciences,2013,41(20):380.
[3]刘丽娟,刘仲鹏.基于改进BP算法的玉米叶部病害图像识别研究[J].江苏农业科学,2013,41(11):139.
 Liu Lijuan,et al.Image recognition of maize leaf diseases based on improved BP algorithm[J].Jiangsu Agricultural Sciences,2013,41(20):139.
[4]刘丽娟,刘仲鹏.北方旱育稀植水稻病害图像识别预处理研究[J].江苏农业科学,2014,42(01):92.
 Liu Lijuan,et al.Study on image preprocessing of maize leaf diseases of dry-cultivated and sparse-planting rice in northern China[J].Jiangsu Agricultural Sciences,2014,42(20):92.
[5]何玲,陈长喜,许晓华.基于物联网的生猪屠宰监管系统关键技术研究[J].江苏农业科学,2017,45(06):201.
 He Ling,et al.Study on key technology of pig slaughtering supervision system based on internet of things[J].Jiangsu Agricultural Sciences,2017,45(20):201.
[6]刁智华,魏玉泉,刁春迎,等.基于图像的小麦白粉病形状特征参数优化与提取[J].江苏农业科学,2017,45(21):229.
 Diao Zhihua,et al.Image-based shape parameter optimization and extraction of wheat powdery mildew[J].Jiangsu Agricultural Sciences,2017,45(20):229.
[7]何彦虎,武传宇,童俊华,等.基于专家系统的穴盘苗品种识别算法设计与试验[J].江苏农业科学,2019,47(04):176.
 He Yanhu,et al.Design and experiment of identification algorithm of plug seedling based on expert system[J].Jiangsu Agricultural Sciences,2019,47(20):176.
[8]陶震宇,孙素芬,罗长寿.基于Faster-RCNN的花生害虫图像识别研究[J].江苏农业科学,2019,47(12):247.
 Tao Zhenyu,et al.Study on peanut pest image recognition based on Faster-RCNN[J].Jiangsu Agricultural Sciences,2019,47(20):247.
[9]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
 Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(20):22.
[10]谢军,江朝晖,李博,等.基于二次迁移模型的小样本茶树病害识别[J].江苏农业科学,2021,49(6):176.
 Xie Jun,et al.Image recognition of tea plant disease small samples based on secondary migration model[J].Jiangsu Agricultural Sciences,2021,49(20):176.

备注/Memo

备注/Memo:
收稿日期:2023-11-09
基金项目:河北省自然科学基金(编号:F2015209308-PT);唐山市科技计划项目(编号:20150212C);河北省高等学校科学技术研究项目(编号:ZD2016070);河北省省级研究生示范课程建设项目(编号:KCJSX2021061)。
作者简介:李帅(1996—),男,安徽阜阳人,硕士,主要从事检测技术及智能装置研究。E-mail:ncstlishuai@163.com。
通信作者:龚瑞昆,博士,教授,硕士生导师,主要从事检测技术及智能装置研究。E-mail:ncstgongruikun@163.com。
更新日期/Last Update: 2024-10-20