[1]陈学新,杜永均,黄健华,等. 我国作物病虫害生物防治研究与应用最新进展[J]. 植物保护,2023,49(5):340-370.
[2]Li Z W,Liu F,Yang W J,et al. A survey of convolutional neural networks:analysis,applications,and prospects[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(12):6999-7019.
[3]刘阳,高国琴. 采用改进的SqueezeNet模型识别多类叶片病害[J]. 农业工程学报,2021,37(2):187-195.
[4]孙俊,朱伟栋,罗元秋,等. 基于改进MobileNet v2的田间农作物叶片病害识别[J]. 农业工程学报,2021,37(22):161-169.
[5]彭红星,徐慧明,刘华鼐. 融合双分支特征和注意力机制的葡萄病虫害识别模型[J]. 农业工程学报,2022,38(10):156-165.
[6]贾璐,叶中华. 基于注意力机制和特征融合的葡萄病害识别模型[J]. 农业机械学报,2023,54(7):223-233.
[7]王焕鑫,沈志豪,刘泉,等. 基于改进MobileNet v2模型的农作物叶片病害识别研究[J]. 河南农业科学,2023,52(4):143-151.
[8]朱学岩,陈锋军,郑一力,等. 融合双线性网络和注意力机制的油橄榄品种识别[J]. 农业工程学报,2023,39(10):183-192.
[9]杜海顺,张春海,安文昊,等. 基于多层信息融合和显著性特征增强的农作物病害识别[J]. 农业机械学报,2023,54(7):214-222.
[10]李建威,吕晓琪,谷宇. 基于改进ConvNeXt的皮肤镜图像分类方法[J]. 计算机工程,2023,49(10):239-246,254.
[11]Chen Z Y,Wu R H,Lin Y Y,et al. Plant disease recognition model based on improved YOLO v5[J]. Agronomy,2022,12(2):365.
[12]王军,冯孙铖,程勇. 深度学习的轻量化神经网络结构研究综述[J]. 计算机工程,2021,47(8):1-13.
[13]吴建成,郭荣佐,成嘉伟,等. 注意力特征融合的快速遥感图像目标检测算法[J]. 计算机工程与应用,2024,60(1):207-216.
[14]Ioffe S,Szegedy C. Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]. 32nd International Conference on Machine Learning,ICML 2015,2015,1:448-456.
[15]齐国红,许新华,师晓丽. 基于多尺度注意力U-Net的结球甘蓝青虫检测方法[J]. 江苏农业学报,2023,39(6):1349-1357.
[16]Wang Q L,Wu B G,Zhu P F,et al. ECA-net:efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle,WA,USA.IEEE,2020:11531-11539.
[17]Yang L,Zhang R Y,Li L,et al. Simam:A simple,parameter-free attention module for convolutional neural networks[C]//International conference on machine learning. Virtual:IEEE,2021:11863-11874.
[18]Sandler M,Howard A,Zhu M L,et al. MobileNet v2:inverted residuals and linear bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City,UT.IEEE,2018:4510-4520.
[19]Tan M X,Le Q V. EfficientNet:rethinking model scaling for convolutional neural networks[EB/OL]. (2019-05-28)[2023-11-09]. http://arxiv.org/abs/1905.11946.
[20]Han K,Wang Y H,Tian Q,et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle,WA,USA.IEEE,2020:1577-1586.
[21]Liu Z,Mao H Z,Wu C Y,et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,LA,USA.IEEE,2022:11966-11976.
[1]张飞云.基于提升小波和学习向量量化神经网络的小麦病害图像识别[J].江苏农业科学,2013,41(05):103.
Zhang Feiyun.Wheat diseases image recognition based on lifting wavelet and learning vector quantization neural network[J].Jiangsu Agricultural Sciences,2013,41(20):103.
[2]周洪刚,康敏.基于机器视觉的成熟柑橘自动识别研究[J].江苏农业科学,2013,41(06):380.
Zhou Honggang,et al.Research on automatic recognizing of mature oranges based on machine vision[J].Jiangsu Agricultural Sciences,2013,41(20):380.
[3]刘丽娟,刘仲鹏.基于改进BP算法的玉米叶部病害图像识别研究[J].江苏农业科学,2013,41(11):139.
Liu Lijuan,et al.Image recognition of maize leaf diseases based on improved BP algorithm[J].Jiangsu Agricultural Sciences,2013,41(20):139.
[4]刘丽娟,刘仲鹏.北方旱育稀植水稻病害图像识别预处理研究[J].江苏农业科学,2014,42(01):92.
Liu Lijuan,et al.Study on image preprocessing of maize leaf diseases of dry-cultivated and sparse-planting rice in northern China[J].Jiangsu Agricultural Sciences,2014,42(20):92.
[5]何玲,陈长喜,许晓华.基于物联网的生猪屠宰监管系统关键技术研究[J].江苏农业科学,2017,45(06):201.
He Ling,et al.Study on key technology of pig slaughtering supervision system based on internet of things[J].Jiangsu Agricultural Sciences,2017,45(20):201.
[6]刁智华,魏玉泉,刁春迎,等.基于图像的小麦白粉病形状特征参数优化与提取[J].江苏农业科学,2017,45(21):229.
Diao Zhihua,et al.Image-based shape parameter optimization and extraction of wheat powdery mildew[J].Jiangsu Agricultural Sciences,2017,45(20):229.
[7]何彦虎,武传宇,童俊华,等.基于专家系统的穴盘苗品种识别算法设计与试验[J].江苏农业科学,2019,47(04):176.
He Yanhu,et al.Design and experiment of identification algorithm of plug seedling based on expert system[J].Jiangsu Agricultural Sciences,2019,47(20):176.
[8]陶震宇,孙素芬,罗长寿.基于Faster-RCNN的花生害虫图像识别研究[J].江苏农业科学,2019,47(12):247.
Tao Zhenyu,et al.Study on peanut pest image recognition based on Faster-RCNN[J].Jiangsu Agricultural Sciences,2019,47(20):247.
[9]康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学,2020,48(22):22.
Kang Feilong,et al.Application technology of image recognition for various crop diseases and insect pests: a review[J].Jiangsu Agricultural Sciences,2020,48(20):22.
[10]谢军,江朝晖,李博,等.基于二次迁移模型的小样本茶树病害识别[J].江苏农业科学,2021,49(6):176.
Xie Jun,et al.Image recognition of tea plant disease small samples based on secondary migration model[J].Jiangsu Agricultural Sciences,2021,49(20):176.